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Abstract—Energy consumption of Cloud data centers has been a major concern of many researchers, and one of the reasons for huge

energy consumption of Clouds lies in the inefficient utilization of computing resources. Besides energy consumption, another challenge

of data centers is the unexpected loads, which leads to the overloads and performance degradation. Compared with VM consolidation

and Dynamic Voltage Frequency Scaling that cannot function well when the whole data center is overloaded, brownout has shown to

be a promising technique to handle both overloads and energy consumption through dynamically deactivating application optional

components, which are also identified as containers/microservices. In this work, we propose an integrated approach to manage energy

consumption and brownout in container-based cloud data centers. We also evaluate our proposed scheduling policies with real traces

in a prototype system. The results show that our approach reduces about 40, 20, and 10 percent energy than the approach without

power-saving techniques, brownout-overbooking approach and auto-scaling approach, respectively, while ensuring Quality of Service.

Index Terms—Cloud data centers, energy efficiency, QoS, containers, microservices, brownout

Ç

1 INTRODUCTION

CLOUD computing has been regarded as a new paradigm
for resource and service provisioning, which provides

the pay-as-you-go pricing model [1]. Clouds have offered
vital benefits for IT industry by relieving the need for
building own infrastructures, therefore, the companies are
able to concentrate on making profits with their services.
In addition, innovative ideas and Internet technologies can
also be delivered with less hardware investment and
human expense. To support the proliferation of cloud serv-
ices, more data centers are established, and many cloud
service providers, like Google, Amazon and Microsoft are
deploying their data centers around the world and offering
their services.

Although cloud data centers are providing compelling
features for customers, the energy consumption of data cen-
ters has become a major topic of research. U.S. data centers
have consumed 100 billion kWh electricity in 2015, which is
equivalent to the total energy consumption of Washington
City. It is estimated that the energy consumption of U.S.
data centers will continue increasing and reach 140 billion
kWh by 2020 [2], [3]. The servers hosted in data centers dis-
sipate heat and need to be maintained by cooling infrastruc-
ture, which provides the cooling resource to extract the heat
from IT devices. Though the cooling infrastructure is
already efficient to some extent, the servers are still one of

the major energy consumers. Cloud data centers not only
consume huge energy consumption, but also have a non-
negligible impact on the environment. It is reported that
data centers have contributed 200 million metric tons of car-
bon dioxide to the environment [4]. Recently, some domi-
nant service providers established a community to promote
energy efficiency for data centers to minimize the impact on
the environment, which is also known as Green Grid [5].

However, reducing energy consumption is a challenging
objective as applications and data are growing fast and com-
plex [6]. Normally, the applications and data are required to
be processed within the required time, thus, large and pow-
erful servers are required to offer services. To ensure the
sustainability of future growth of data centers, cloud data
centers must be designed to be efficiently utilize the resour-
ces of infrastructure and minimize energy consumption. To
address this problem, the concept of green cloud is pro-
posed, which aims to manage cloud data centers in an
energy efficient manner [5]. Consequently, data centers are
required to offer resources while satisfying Quality of Ser-
vice (QoS), as well as reduce energy consumption.

One of the main reasons of high energy consumption of
cloud data centers lies in that computing resources are inef-
ficiently utilized by applications on servers. Therefore,
applications are currently built with microservices to utilize
infrastructure resource more efficiently. Microservices are
also referred as a set of self-contained application compo-
nents [7]. The components encapsulate its logic and expose
its functionality via interfaces to make them flexible to be
deployed and replaced. With microservices or components,
developers and user benefit from their technological hetero-
geneity, resilience, scalability, ease of deployment, organi-
zational alignment, composability and optimization for
replicability. It also brings the advantage of more fine-
grained control over the application resource usage.
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Thus, in this paper, we take advantage of brownout, a par-
adigm inspired from voltage shutdown that copes with
emergency cases. In original brownout scenario, the light
bulbs emit fewer lights to save energy consumption. In
Cloud scenario, brownout can be applied to microservices
or application components that are allowed to be temporar-
ily deactivated without affecting main functionality. When
brownout is triggered, the user’s experience is temporally
degraded to relieve the overloaded situation and reduce
energy consumption.

It is common for microservices or application components
to have this brownout feature. Klein et al. [8] introduced an
online shopping system that has a recommendation engine to
recommend products to users. The recommendation engine
enhances the function of the whole system, while it is not nec-
essary to keep it running all the time, especially under the
overloaded situation. As the recommendation engine requires
more resource in comparison to other components, if it is
deactivated, more clients with essential requests or QoS con-
straints can be served. Apart from this example, brownout
paradigm is also suitable for other systems that allow some
microservices or application components to not keep running
all the time.

In this paper, we propose a brownout prototype system
based on containers to reduce data center energywhile ensur-
ing Quality of Service. The main contributions of our work are
as follows: 1) Proposed an effective architecture that enables
brownout paradigm to manage the container-based environ-
ment, which enables fine-grained control on containers; 2)
Presented several scheduling policies for managing microser-
vices or containers to achieve power saving and QoS con-
straints; 3) Implemented a prototype system and 4) carried
out the evaluation in INRIA Grid’5000 testbed using resour-
ces fromLyon cluster forWikipediawebworkload.

The rest of this paper is organized as: Section 2 discusses
the related work, followed by scenarios that brownout can
be applied and the challenges for using brownout presented
in Section 3. Section 4 and Section 5 introduce the architec-
ture that enables brownout to manage the microservices or
application components and models respectively. Schedul-
ing policies for determining the activation and deactivation
of microservices are presented in Section 6. In Section 7, we
present our experiments environment and evaluate the per-
formance of different scheduling policies. Conclusions and
future directions are given in Section 8.

2 RELATED WORK

A recent report suggests that U.S. data center will consume
140 billion kWh of electricity annually in the next four years by
2020 [2], which equals to the annual output of about 50 brown
power plants and translates to higher carbon emissions. To
decrease operational costs and environmental impact, numer-
ous state-of-the-art research has been conducted to reduce
data center energy consumption. The main categories for han-
dling this energy efficient problem are VM consolidation and
Dynamic Voltage Frequency Scaling (DVFS).

VM consolidation minimizes energy consumption by allo-
cating tasks among fewer machines and turning the unused
machines into low-power mode or power-off state. To reduce
the number of active machines, the VMs hosted on underutil-
ized machines are consolidated to other machines and the

underutilized machines are transformed into low-power
mode. Beloglazov et al. [9] proposed several VM consolida-
tion algorithms to save data center energy consumption. The
VM consolidation process is modeled as a bin-packing prob-
lem,where VMs are regarded as items and hosts are regarded
as bins. The objective of these VM consolidation algorithms is
mapping the VMs to hosts in an energy-efficientmanner. This
work advanced the existingwork bymodeling the algorithms
to be independent of workload types and do not need to
know the VM application information in advance. However,
the algorithms have not been evaluated under realistic test-
beds. Based on the VM consolidation approaches in this
work, other works like [10], [11], [12], have done some exten-
sionwork to improve algorithm performance.

Mastroianni et al. [13] introduced a self-adaptive method
for VM consolidation on both CPU and memory. The
method aims to reduce the overall costs caused by energy-
related issues. The VM consolidation process is determined
by a probabilistic function based on Bernoulli trial. Both the
mathematical analysis and realistic testbed results show
that the proposed method reduces total energy consump-
tion efficiently.

Zheng et al. [14] jointly considered VM consolidation and
traffic consolidation together to minimize the servers and
network energy consumption in data centers. The authors
not only model the server power model, but also the switch
model in the network. Experiments conducted under real
environment show that this joint approach outperforms the
approaches that only adopt VM consolidation in energy
consumption and service delay. Ferdaus et al. [15] proposed
a VM consolidation algorithm combining with Ant Colony
Optimization, in which a number of artificial ants select fea-
sible solutions and exchange information for their solutions
quality to obtain an optimized solution. As the authors con-
sider multiple resource types, the VM consolidation process
in this work is modeled as a multi-dimensional vector pack-
ing process.

The difference of DVFS and VM consolidation lies in that
DVFS achieves energy saving through adjusting frequencies
of processors rather than using less active servers. The
DVFS approach introduces a trade-off between energy con-
sumption and computing performance, where processor
lowers the frequency/voltage when it is lightly loaded and
utilizes full frequency/voltage when heavily loaded.

Kim et al. [16] modeled real-time service as real-time VM
requests. To balance the energy consumption and price,
they proposed several DVFS algorithms to reduce energy
consumption. Pietri et al. [17] introduced another energy-
aware workflow scheduling approach using DVFS and its
objective is finding an available frequency to minimize
energy consumption while ensuring user deadline. Deng
et al. [23] coordinated CPU and memory together to investi-
gate performance constraints, which is the first trial to con-
sider them together when applying DVFS. They aim to find
the most energy efficient frequency while ensuring system
performance constraints.

To reduce energy consumption, an approach that com-
bines DVFS and VM consolidation together was presented
in [18]. The authors proposed several heuristic algorithms
for batch-oriented scenarios. A DVFS-based algorithm for
consolidating VMs on hosts is introduced to minimize the
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data center energy consumption while ensuring Service
Level Agreement of jobs. The results demonstrate that these
two techniques can work together to achieve better energy
efficiency.

VM consolidation and DVFS have been proven to be effi-
cient to reduce energy consumption, however, both of them
cannot function well when the whole data center is over-
loaded. Therefore, we introduce a paradigm, called brown-
out, to handle data center overloads and reduce energy
consumption. Originally, the brownout is applied to prevent
blackouts through voltage drops in case of emergency. In
Cloud scenario, it is first borrowed in [8] to design more
robust applications under the overloaded or unpredicted sit-
uation. Tomas et al. [19] introduced a combined brownout-
overbooking approach to improve resource utilization while
ensuring response time. In our previous work, we applied
brownout to save energy consumption in data centers. In
[21], we presented the brownout enabled system model and
proposed several heuristic policies to find the microservices
or application components that should be deactivated for
energy saving purpose. We also introduced that there was a
trade-off between energy consumption and discount in our
model. In [22], we extended our previous work and adopted
approximate Markov Decision Process to improve the afore-
mentioned trade-off. Both in [21] and [22], the experiments
are conducted under simulation environments. Different
from them, in this paper, we implement a prototype system
based on real infrastructure.

Some other works related to energy-aware resource
scheduling in Clouds are also proposed in the literature.
Gai et al. [24] presented a cost-aware heterogeneous cloud
memory model to provision memory services and consid-
ered energy performance. In [25], the authors introduced a
novel approach that aimed to reduce the total energy cost of
heterogeneous embedded systems in mobile Clouds. A
dynamic energy-aware model to reduce the additional
power consumption of wireless communications in the
dynamic network environment was introduce in [26]. Dif-
ferent from our work, these articles are not focused on data
center energy consumption.

In this work, our objective is reducing data center energy
consumptionwhile ensuring Quality of Service. Some related
work considering power and QoS have also been conducted.
Khanouche et al. [27] proposed an energy-aware and QoS-
aware service selection algorithm, which is designed to solve
a multi-objective optimization problem. But it is applied to
the Internet of Things rather than data centers. Wang et al.
[20] used an improved particle swarm optimization algo-
rithm to develop an optimal VM placement approach involv-
ing a tradeoff between energy consumption and global QoS
guarantee for data-intensive services in national cloud data
centers.

Different from the energy efficient approaches based on
VMs, our implementation is based on containers. Compared
with VMs, containerization provides cloud application
management based on lightweight virtualization. Currently,
most work related to containers are focused on the orches-
tration of containers construction and deployment [28]. A
detailed comparison of related work is shown in Table 1.

To the best of our knowledge, our work is the first proto-
type system to reduce energy consumption with brownout
based on containers, which also considers the trade-offs
between energy consumption and QoS. Our prototype sys-
tem provides practice and experience for finding comple-
mentary option apart from VM consolidation and DVFS.

3 MOTIVATIONS: SCENARIOS AND CHALLENGES

To study service providers’ requirement and concerns for
managing services based on containers, we give a motiva-
tion example of a real-world case study with brownout
technology.

A good example of the container-based system is the
web-based service. An online shopping system imple-
mented with containers are presented in [29], which con-
tains multiple microservices, including user, user database,
payment, shipping, front-end, orders, carts, catalog, carts
database and etc. As it is implemented with microservices,
each microservice can be activated or deactivated indepen-
dently. When requests are bursting, the online shopping

TABLE 1
Comparison of Focus of Related Work and Our Work

Approach Technique Optimization Objective Management Unit Experiments Platform

VM

Consolidation
DVFS Brownout

Energy

Consumption
SLA/QoS Overloads VMs Containers Simulation Real Testbed

Beloglazov et al. [9] @ � � @ @ @ @ � @ �
Beloglazov et al. [10] @ � � @ @ � @ � @ �
Chen et al. [11] @ � � @ @ � @ � @ �
Han et al. [12] @ � � @ @ @ @ � @ �
Mastroianni et al. [13] @ � � @ � @ @ � � @
Zheng et al. [14] @ � � @ @ � @ � � @
Ferdaus et al. [15] @ � � @ @ � @ � � @
Kim et al. [16] � @ � @ @ � � � @ �
Pietri et al. [17] � @ � @ @ � � � @ �
Teng et al. [18] @ @ � @ @ � � � @ @
Klein et al. [8] � � @ � @ @ � � � @
Tomas et al. [19] � � @ � @ @ � � � @
Wang et al. [20] @ � � @ @ � @ � � @
Xu et al. [21] @ � @ @ � @ @ @ @ �
Xu et al. [22] @ � @ @ � @ @ @ @ �
iBrownout � � @ @ @ @ � @ � @
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system may be overloaded, and it cannot satisfy QoS
requirements. To handle the overloads and reduce energy
consumption, the brownout approach can be applied to
temporarily disable some microservices, such as the recom-
mendation engine, to save resource and power. By deacti-
vating the recommendation engine, the system is able to
serve more requests with the essential requirement and sat-
isfy QoS. When the system is not overloaded anymore, the
disabled microservices are activated again. Considering the
overloaded situation, we assume that the service provider
of this online shopping system is interested to improve QoS
and save energy costs. In addition, the service provider may
prefer to apply brownout to manage microservices in their
systems. For such deployment, the service provider faces
several challenges as below:

1. How to predict the tendency of future workload. It is com-
mon for cloud data centers meeting unexpected
loads, which may lead overloaded situation and per-
formance degradation. Estimating the workloads
precisely enables the service providers to select
proper resource management policy.

2. When to disable microservices. Microservices can be
dynamically deactivated or activated according to
system conditions. A crucial decision should be
made in both situations to determine the best time to
deactivate containers to relieve overloads and reduce
energy consumption while ensuring predefined QoS
constraints.

3. Which microservice to disable. First, mandatory and
optional microservices are required to be identified.
The mandatory microservices, like the database,
must be kept running all the time. While the optional
microservices are allowed to be deactivated tempo-
rarily, such as the recommendation engine in the
online shopping system. Second, once brownout is
triggered, it may require selecting one or more
microservices to deactivate. The challenge lies in
determining the proper combinations of deactivated
microservices to achieve the best beneficial results.

4. When to turn the hosts on or into low-power mode. To
reduce energy consumption, it is required to com-
bine brownout and dynamically turning hosts into
low power states, which saves the energy of idle
hosts. To ensure QoS, it is also essential to determine
efficiently when the host states should be switched,
because hosts are required to be turned on quickly
when requests are increasing.

5. How to design scheduling policy based on brownout. In
brownout-compliant microservices, there is a control
knob called dimmer that represents a certain probabil-
ity and shows how often the optional components are
executed. It is required to design the dimmer value to
be efficiently computed, which supports the brown-
out to be triggered quickly. The designed policy is
also needed to be available for different preferences,
like investigating the trade-offs between energy con-
sumption andQoS.

To address aforementioned issues and enable system
deployment based on containers and brownout, we intro-
duce our approach: iBrownout.

4 IBROWNOUT ARCHITECTURE

The architecture of iBrownout is demonstrated in Fig. 1 and
its main components are explained below:

1) Users: All services provided by the system are avail-
able for users to submit their requests to cloud data
centers. The user component contains user’ informa-
tion and requested services. In addition, the system
administrator is also included in this component,
in which it captures administrators’ configurations
such as predefined QoS constraints (including maxi-
mum response time, error rates and etc.), energy
budget and service deployment patterns (in Docker,
it is represented as a compose file [30]).

2) Cloud Service Repository: The services provided by the
service provider are managed by Cloud Service
Repository component, which contains the service
information, including service’s name and image.
Each service may be constructed by several micro-
services, for example, in the online shopping system,
the carts service manages items in user’s cart, which
contains cart microservice showing items in carts
and cart database microservice storing items infor-
mation. To manage microservices with brownout,
the microservices are identified as mandatory or
optional.
a. Mandatory microservices: The mandatory microser-

vice keeps running all the time when it is
launched, such as database-relatedmicroservices.

b. Optional microservices: The optional microservices
are allowed to be activated or deactivated accord-
ing to system status. Optional microservices have
parameters like CPU utilization uðMScÞ, which
indicates the amount of CPUusagewhen it is run-
ning and the reduced amount of CPU usage if it is
deactivated.

Fig. 1. iBrownout architecture.
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3) Execution Environment: It represents the running
environment for containerized applications. The
dominant environments are Docker, Kubernetes and
Mesos. In our prototype system, we adopt Docker to
provide the execution environment for containers/
microservices.

4) Brownout Controller: The operation of optional micro-
services are controlled by Brownout Controller,
which determines operations based on system over-
loaded status. The Brownout Controller takes advan-
tage scheduling policies that are introduced in
Section 6 (Scheduling Policies) to offer an elegant
solution for operating optional microservices. It is
also responsible for monitoring the health of all serv-
ices. To adapt to our architecture, our dimmer in
Brownout controller is different from the one in [8]
that requires a dimmer per application. Our dimmer
is only applied to the optional microservices. More-
over, rather than based on response time, our dimmer
is computed according to the severity of overloaded
hosts (the number of overloaded hosts).

5) System Monitor: These components provide health
monitoring of nodes and collects hosts resource usage
information. Third party monitoring toolkit can be
used to provide a view of host status. For instance,
the APIs provided by Grid’5000 [31] (a real cluster
infrastructure in France) give users real-time reports
on infrastructure metric, including host healthy sta-
tus, utilization and energy consumption.

6) Scheduling Policy Manager: This component provides a
set of scheduling policies for Brownout Controller
to schedule containers/microservices. Because there
exist energy consumption budget andQoS constraints,
we have to design and implement policies targeting
for different preferences. For example, when service
provider cares more about QoS, a scheduling policy
that focuses on optimizingQoSwill be applied.

7) Models Management: It provides energy consumption
and QoS models for the system. The power consump-
tionmodel should bemodeled to be relevant tomicro-
service/container utilization, and the QoS model
identifies the constraints of QoS. such as response
time and error rates.

8) Cloud Infrastructure: In infrastructure as a service
model, Cloud providers offer bare metal to support
service requests, which host multiple containers/
microservices. We take advantage of Grid’5000 clus-
ters as our infrastructure.

In order to realize the proposed architecture, several
techniques are utilized.

Java: iBrownout is built using Java and it benefits from
Java’s feature to run on any platform with Java Virtual
Machine. Components including Brownout Controller, Sys-
tem Monitor, Deployment Policy Manager and Models
Management are all implemented with Java. These compo-
nents calls Docker APIs to collect containers information,
such as utilization of containers.

Docker [32]: iBrownout takes advantage of Docker
Swarm cluster to manage the containers/microservices,
including microservices deployment, stop, start, update
and etc. Docker compose file is used to define features of

containers, such as whether containers are optional, which
containers are deployed, how many containers are pro-
vided, how much resources are allocated to containers,
deployment constraints of containers and dependencies
between different containers.

Ansible [33]: It is a toolkit to automate applications provi-
sioning, configuration management and application deploy-
ment. iBrownout utilizes it to send management operations
among nodes.

5 MODELLING AND PROBLEM STATEMENT

In this section, we will introduce the models in our system
and state the problem we aim to optimize. Table 2 presents
the symbols and their meanings used in this paper. For
example, we use hi to denote host i and PiðtÞ to represent
the power of hi at time interval t.

5.1 Power Consumption

We adopt the servers power model derived from [14]. The
power of server i is PiðtÞ that is dominated by the CPU utili-
zation:

PiðtÞ ¼ Pidle
i þ ui � Pdynamic

i ; Ni > 0

0; Ni ¼ 0

(
(1)

PiðtÞ is composed of idle power and dynamic power. The
idle power is regarded as constant and the dynamic power
is linear to the server utilization ui [14]. If no container or
microservice is hosted on a server, the server is turned off to
save power. The server CPU utilization equals to total CPU
utilization of all the containers/microservices deployed to
the server, which is represented as:

ui ¼
XNi

j¼1
uðMSi;jðtÞÞ (2)

where MSi;j refers to the jth microservice on server i, Ni

represents the number of microservices deployed to server
i. And uðMSi;jðtÞÞ refers to the CPU utilization of the con-
tainer/microservice at time interval t.

Then the total energy consumption during time interval
t, withM servers is:

EðtÞ ¼
XM
i¼1

Z t

t�1
PiðtÞdt (3)

5.2 Quality of Service

To model the QoS requirement in our system, we adopt sev-
eral QoS metrics as below:

Overloaded Time Ratio: based on host loads, we define two
states for hosts: overloaded and non-overloaded. Overloads
will lead hosts to experience performance degradation. We
regard host as overloaded when host utilization is above
the predefined utilization threshold. To evaluate this QoS
metric to be independent of workloads, we adopt the metric
introduced in [9], which is denoted as Overloaded Time
Ratio (OTR):

OTRðutÞ ¼ toðutÞ
ta

(4)
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where ut is the overloaded CPU utilization threshold; to is
the time period that host is identified as overloaded, which
is relevant to ut; and ta is the total time periods of the hosts.
As a QoS constraint, this metric is configured as the maxi-
mum allowed value of OTR. For instance, if the system SLA
is defined as 10 percent, it the time period of overloaded
states for all the hosts is less then 10 percent. The SLA con-
straint can be formulated as:

1

M

Xn¼M
i¼1

OTRnðutÞ � 0:1 (5)

where M is the total number of hosts in the data center. As
introduced the later, our brownout-based approach checks
the host status at each time period and triggers the brown-
out to deactivate when there are overloaded hosts. There-
fore, this metric also represents the ratio that brownout is
triggered.

Response time: this metric measures the time that from
sending requests to receiving requests. We also evaluate the
response time with the maximum of kth percentile response
time of all requests, where k could be 90, 95, 99 and etc. For
example, if the maximum of 95th percentile response time
equals to 1 second, it means that 95 percent of all requests
get the response within 1 second.

SLA Violation Ratio: It represents how many requests are
failed due to overload. If clients send Numa requests to the
system, and Numerr of them are returned with errors, then
error rate is represented as:

SLAVR ¼ Numerr

Numa
(6)

5.3 Optimization Objective

As discussed in the previous section, it is necessary to mini-
mize the total energy consumption, while ensuring QoS by
avoiding overloads, decreasing response time and reducing
error rates. Therefore, our problem can be formulated as an
optimization problem Eqs. (7), (8), (9), (10):

min
XT
t¼1

EðtÞ (7)

1

M

Xn¼M
n¼1

OTRnðutÞ � a (8)

Rt
avg � b; Rt

95th � f (9)

SLAVR � g (10)

where
PT

t¼1 EðtÞ is the total energy consumption of data
center, a is the maximum allowed average response time of
overloaded states; Rt

avg is the average response time and b is
the allowed average response time; Rt

95th is the maximum of
95th percentile response time and f is the allowed the 95th
percentile response time, and g is allowed SLA violation
ratio.

6 SCHEDULING POLICY

In this section, we will introduce our brownout-based
scheduling policies. Prior to brownout approach, we require
an auto-scaling algorithm to dynamically add or remove
hosts to utilize host resource more efficiently.

6.1 Auto-Scaling Policy

We adopt the auto-scaling algorithm in [34], which is a pre-
defined threshold-based approach. With profiling experi-
ments, we configure the requests overloaded threshold
above which the host cannot respond to requests within an
acceptable time limit. As shown in Algorithm 1, in the

TABLE 2
Symbols and Their Meanings

Symbols Meanings

hi Server (host) i
t Time interval t
PiðtÞ Power of hi at time t
P idle
i Power when hi is idle

Pdynamic
i Power when hi is fully loaded

Pmax
i Maximum power of hi

hl Server list in data center
M Size of server list hl
Ni Number of microservices assigned to hi

ui Utilization of host hi

MSi;j Microservice j on hi

uðMSi;jÞ Utilization of microservice j on hi

EðtÞ Energy consumption at time interval t
ut Overloaded threshold of host
OTRðutÞ Overloaded time ratio according to ut
k Maximum percentile value of response time
tv Time threshold of SLA violation
SLAVRðtvÞ SLA violation ratio according to violation time

threshold tv
Numv The number of requests that violate SLA
Numa The total number of requests from clients
C The maximum number of containers on hosts
a The maximum allowed overloaded time ratio
b The maximum allowed average response time
f The maximum allowed 95th percentile of response time
g The maximum allowed SLA violation ratio
Ma The number of current active hosts
M
0
a The updated number of active hosts for Auto-scaling

policy
no Overloaded threshold of request number based on

profiling data
nr Request rate
ocli;t The optional container/microservice list on hi at time

interval t
Pðocli;tÞ The power set of ocli;t
dcli;t The deactivated container/microservice list on hi at

time interval t
HUMðÞ Host utilization model to compute host power based

on host utilization
HP The expected host power calculated by host utilization

model
TP The overloaded power threshold
uri The expected utilization reduction
uðdcli;tÞ The utilization of deactivated container/microservice list
nt The number of overloaded hosts at time interval t
ut The dimmer value
COHðÞ Compute overloaded hosts
HPMðÞ Host power model to compute host utilization based

on host power
Pr
i Expected power reduction of hi

MSc Container/microservice c
St The set of deactivated containers/microservice

connection tags
CtðMScÞ Connection tag ofMSc

X Random variable to generate sublist of ocli;t
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initialization stage, the master node that runs auto-scaling
algorithm first gets the number of current active hosts
(line 1), sets the overloaded threshold of request number
according to profiling data (line 2) and fetches the request
rate at current time window according to previous time
windows (line 3). The advantage of sliding time window is
to give more weights to the values of recent time windows,
and more details will be given in Section 7. Line 4 shows the
method to compute the current required hosts Ma0 , which is
the ratio of current request rate and the overload threshold.
If the required number of hosts is more than current active
hosts, more hosts will be added to provide services, other-
wise, if current active hosts are more than required, then the
excess machine can be set as low-power mode to save
energy consumption (lines 6-12). Finally, the master node
will update the number of active hosts.

Algorithm 1. Auto-Scaling Policy

Input: host list hlwith sizeM , number of active hostsMa, num-
ber of requests when host is overloaded no, recent request
rate in the recent time nr.

Output: number of active hostsMa0
1: Ma number of current active hosts
2: no  overloaded threshold of request number according to

profiling data
3: nr number of request rate at current time window

according to previous time windows
4: Ma0  dnr � noe
5: M 0  Ma0 �Ma

6: ifM 0 > 0 then
7: AddM 0hosts
8: else ifM 0 < 0 then
9: Remove jM 0jhosts
10: else
11: no scaling
12: end if
13: update number of active hosts withMa0

6.2 Initial Deployment

In the initial deployment stage, containers are deployed based
on Docker compose file, which identifies the all the required
information of services and the configurations of initial
deployment. A simple example is shown in Fig. 2. Lines 2-14
show the information of recommendation engine service,
which is built on the Ubuntu image and attached with a data
volume. The recommendation engine is set as optional micro-
service, which can be deactivated and has two replicates.
Moreover, this service will only be deployed on Docker
worker node as deployment constraint. Lines 16-21 demon-
strate the information of user database service, which is not
optional and restricts to be deployed toDockermaster node.

6.3 Optimization Deployment with Scheduling
Policies based on Brownout

Wehave proposed three brownout-based policies as follows:

6.3.1 Lowest Utilization Container First (LUCF)

The Lowest Utilization Container First policy selects a set of
containers with the lowest utilization that reduces the utili-
zation to be less than the overloaded threshold of a host is

overloaded. Let ocli;t be the optional container list on host hi

at time interval t. Let Pðocli;tÞ to be the power set of ocli;t, the
LUCF finds the deactivated container list dcli;t, which is
included in Pðocli;tÞ. The deactivated container list mini-
mizes the value difference between the expected utilization
reduction ur

i and its utilization uðdcli;tÞ The deactivated con-
tainer list is defined in Eqs. (11).

dcli;t ¼
fHP � TP; ur

i � uðdcli;tÞ ! ming; if PiðtÞ � TP

;; if PiðtÞ < TP

�
(11)

whereHP is the expected host power calculated by host uti-
lization model HUMðhi; ui � uðdcli;tÞÞ that fetches the host
power based on host utilization ui � uðdcli;tÞ; TP is the over-
loaded power threshold of hi.

The pseudocode of LUCF is shown in Algorithm 2,
which mainly consists of 8 steps as discussed below. Before
entering the approach procedures, service provider first
needs to initialize input parameters for the algorithm, such
as overloaded power threshold (lines 1-2). The power
threshold TP is a value for checking whether a host is
overloaded.

1) In each time interval t, checking all the hosts status
and counting the number of overloaded hosts as nt

(line 3).
2) Adjusting the dimmer value ut as

ffiffiffiffi
nt
M

p
based on the

number of overloaded hosts nt and host size M (line
5). As introduced in related work, the dimmer value
ut is applied to compute the adjustment degree of
power consumption at time t. The dimmer value ut
is 1.0 if all the hosts are overloaded at time t and it
means that brownout controls containers/microser-
vice on all the hosts. The dimmer value is 0.0 if no
host is overloaded and brownout will not be trig-
gered at time t. The adjustment of dimmer presents
that the dimmer value is relevant to the number of
overloaded hosts.

3) Calculating the expected utilization reduction on the
overloaded hosts (lines 7-9). Based on the dimmer

Fig. 2. Simple example of Docker compose file.
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value and host power model, LUCF calculates
expected host power reduction Pr

i (line 8) and
expected utilization reduction uri (line 9) respectively.
In our host power model, the host power consump-
tion ismainly relevant to it CPUutilization. As shown
in Table 3, we list power consumption at different
CPU utilization levels of one host in Grid’5000 (Sagit-
tare cluster in Lyon). In this power model, for exam-
ple, the host with 100 percent utilization is 237 Watts
and 80 percent utilization is 231 Watts, if the power is
required to be reduced from 237 to 231 Watts, the
expected utilization reduction is 100%� 80% ¼ 20%.

4) Resetting the deactivated container list dcli;t and the
set of deactivated container connection tags St as
empty (lines 10-11). This list and the set will be ready
to collect deactivated containers and their connection
tags.

5) Finding the containers to be deactivated (lines 16-27).
The LUCF sorts the optional container list ocli;t based
on container utilization parameter in ascending
order , therefore, the container with the lowest utili-
zation is put in the head of the list. Since we consider
connected containers, each container has a connec-
tion tag CtðMScÞ that shows how it is connected
with other containers. If the first container utiliza-
tion parameter value is above ur

i , Algorithm 2 adds
this container into the deactivated container list
dcli;t and inserts its connection tag CtðMS1Þ into St

(lines 12-13). After that, Algorithm 2 finds other
connected containers and adds them into deacti-
vated container list (line 14). If the first container
utilization does not satisfy the expected utilization
reduction, Algorithm 2 finds the containers sublist
in the optional container list to deactivate more
containers (lines 16-22). The utilization of this sub-
list is closest to the expected utilization reduction
among all the sublists.

Algorithm 2 also puts all the containers in the
sublist into the deactivated containers list and puts
their connection parameters into the St. For con-
nected containers, the sorting process is modified
as treating the connected containers together for
sorting, which lowers the priority of deactivating
the connected containers, and avoids deactivating
too many containers due to connections.

6) Finding other connected container and puts them
into the deactivated container list (lines 23-27).

7) Deactivating the containers in the deactivated con-
tainer list (line 29).

8) In Algorithm 2, if no host is above the power thresh-
old, the algorithm activates the deactivated contain-
ers (line 32).

Algorithm 2. Lowest Utilization Container First Policy
(LUCF)

Input: host list hl with size M , microservice information, over-
loaded power threshold TP , dimmer value ut at time t,
scheduling interval T , deactivated component list dcli;t on
host hi, power model of hostHPM, the optional component
list ocli;t, which is sorted based on utilization uðMScÞ in
ascending order

Output: total energy consumption, number of shutting down
hosts

1: initialize parameters with inputs, like TP
2: for t 0 to T do
3: nt  COHðhlÞ
4: if nt > 0 then
5: ut =

ffiffiffiffi
nt
M

p
6: for all hi in hl (i.e., i ¼ 1; 2; ;M) do
7: if (PiðtÞ > TP ) then
8: Pr

i  ut � PiðtÞ
9: ur

i  HPM(hi; P
r
i )

10: dcli;t NULL
11: St NULL
12: if uðMS1Þ � ur

i then
13: dcli;t dcli;t +MS1

14: St St + CtðMS1Þ
15: end if
16: forMSc in ocli;t do
17: if ðuðMScÞ � ur

i Þ & ðuðdcli;tÞ � ur
i Þ then

18: dcli;t dcli;t +MSc

19: St St + CtðMScÞ
20: min ður

i � uðdcli;tÞÞ
21: end if
22: end for
23: for allMSc in ocli;t do
24: if CtðMScÞ in St then
25: dcli;t  dcli;t þMSc

26: end if
27: end for
28: end if
29: deactivate components in dcli;t
30: end for
31: else
32: activate deactivated components
33: end if
34: end for

It is noticed that when the whole data center is over-
loaded, auto-scaling cannot add more hosts because of the
limited resource. LUCF takes effects when Auto-scaling
cannot function well, to be more specific, LUCF can be
embedded into line 7 in Algorithm 1 to handle with over-
loads and reduce energy consumption.

Algorithm Complexity: the complexity of LUCF at each
time interval is calculated as below: the complexity of find-
ing the deactivated containers is OðC �MÞ, where C is the
maximum number of containers on hosts andM is the num-
ber of hosts. The complexity of finding the connected com-
ponents is also OðC �MÞ. Therefore, the complexity at each
time interval of LUCF is the sum of these parts, which is
Oð2 � C �MÞ. To be noted, line 3 relies on the network con-
nection, if C and M are small, the network delay OðTdÞ can
be a dominant part of algorithm execution time. Please see
the results in Section 7.4.

TABLE 3
Power Consumption of Selected Node at

Different Utilization Levels in Watts

Utilization Sleep 0% 10% 20% 30% 40%

Power (Watts) 10 201 206 211 213 216
Utilization 50% 60% 70% 80% 90% 100%
Power (Watts) 221 223 225 231 233 237
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6.3.2 Minimum Number of Components First Policy

(MNCF)

The Minimum Number of Containers First (MNCF) policy
selects the minimum number of containers while reducing
the energy consumption in order to deactivate fewer serv-
ices, as formalized in Eq. (12). We do not provide the pseu-
docode of MNCF here because it is quite similar to the
LUCF algorithm introduced earlier.

dcli;t ¼
fHP � TP; juðdcli;tÞj ! ming; if PiðtÞ � TP

;; if PiðtÞ < TP

�
(12)

6.3.3 Random Selection Container Policy (RSC)

The Random Selection Container policy (RSC) policy takes
advantage of a random selection of a number of optional
containers to reduce energy consumption. Based on a uni-
formly distributed discrete random variable ðXÞ, which
selects randomly a subset of dcli;t, RSC is presented in
Eq. (13).

dcli;t ¼
fHP � TP;X ¼ Uð0; jocli;tj � 1Þg; if PiðtÞ � TP

;; if PiðtÞ < TP

�
(13)

7 PERFORMANCE EVALUATION

We are evaluating our techniques experimentally on INRIA
Grid’5000 testbed for Wikipedia web workload. We also
compare the performance with related policies introduced
in [5], [19] and [34].

7.1 Workload

We use real trace from Wikipedia requests on 2007 October
17 to replay the workload of Wikipedia users. To scale the
workload set to fit with our experiments, we use 5 percent of
the original user requests size. JMeter [35] is a toolkit
designed for load testing and performancemeasurement, we
use it to generate the requests by replaying the Wikipedia
trace. nr is the predicted request rate, which is calculated
based on a sliding window [9]. Let Lw to be the window size,
and nrðtÞ to be the request rate at t, we estimate nr as:

nrðLwÞ ¼ 1

Lw

XLw�1

t¼0
nrðtÞ (14)

In our experiments, we set the sliding window size as 5.
Fig. 3 shows the requests rate per second during the day,
and the predicted rates and the actual rates are quite close.

7.2 Testbed

We use Grid’5000 [31], a French experimental grid platform,
as our testbed. We adopt the cluster equipped with power
measurement APIs at Lyon site, which is located at the
southeast French. The architecture of prototype system
deployed on the Grid’5000 clusters is presented in Fig. 4,
which shows that all the nodes are deployed with Docker
swarm and categorized according to different roles as below:

� Master node: this node is initialized as the master
node and running some services that can only be
deployed on the master node, such as the brownout
controller containing scheduling policies, as well as
the Java Runtime and Ansible toolkit.

� Worker node: these nodes are workers that running
services apart from the services on master node and
database services. We have multiple worker nodes
in our system.

� Worker node (node only for the database): the data-
base services are deployed on a specific worker
node, which only hosts database-related services.

We also have another node, namely request node, that
contains workload trace and installed with JMeter to send
requests to our cluster. This node can be located at any place
to simulate users’ behavior. In our experiments, to reduce
the impacts of uncontrolled network traffic out of Lyon clus-
ter, we also locate this node in Lyon cluster.

The hardware information of our selected nodes is as
below:

� Machine model: Sun Fire V20z. The maximum
power of this model is 237 Watts, and its power of
sleep mode is 10 Watts;

� Operating system: Debian Linux;
� CPU: AMD Operon 250 with 2 cores (2.4 GHz);
� Memory: 2 GB
One of the nodes is running as the Docker Swarm master

node, and other nodes are running as worker nodes. All
required applications, such as Java, Docker, Ansible and
JMeter, are installed in advance to minimize the impacts of
CPU utilization and network traffics.

7.3 Results

To evaluate the performance of our proposed policies, we
use three benchmark policies for comparison.

Fig. 3. Predicted and actual requests rate.

Fig. 4. Architecture of prototype system.
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1) Non-Power-Aware (NPA) policy [5]: it applies no
power-aware optimization and hosts are keeping on
all the time.We give 13 nodes as the resource for NPA.

2) Brownout-OverBooking (BOB) policy [19]: it aims to
maximize actual utilization while reducing response
time andminimally triggering brownout. The brown-
out operation in BOB is based on response time.
When the response time is less than target utilization,
the approach gradually increases application utiliza-
tion. To let BOB experience overloads, only 10 nodes
are given to it.

3) Auto Scaling (Auto-S) policy [34]: it dynamically
scales in and out the number of active hosts as intro-
duced in Algorithm 1. To let Auto-S endure over-
loads, we also give 10 nodes to Auto-S.

For our proposed policies, they have the identical
resource as BOB and Auto-S. In the following experiments,
we mainly investigate two parameters: overloaded thresh-
old and optional utilization percentage.

Overloaded threshold: it represents the CPU utilization
threshold that identifies whether a host is overloaded. We
adopt this parameter since [5] have shown that it has an
impact on energy consumption. It is varied from 60 percent
to 90 percent in increments of 10 percent. We choose this
range because of the smaller overloaded threshold, like
50 percent, means hosts are easier to be identified as over-
loaded and it will lead to inefficient resource usage.

Optional utilization percentage: it identifies howmuch CPU
resource is given to optional containers, which also means
how much CPU utilization can be reduced to save energy
consumption. This parameter is investigated because [21]
shows that it influences the power consumption. It is varied
from 10 to 40 percent in increments of 10 percent. We choose
these ranges because [21] shows large optional utilization
percentage, like 50 percent, comes along much revenue loss
and non-negligible experience degradation.

7.3.1 Comparison with Different Overloaded

Thresholds

Wehave conducted several experimentswith different values
of overloaded threshold and optional utilization percentage
for LUCF policy. In Fig. 5, the results show that when the
overloaded threshold is higher, LUCF reduces less energy
consumption, and when the system has higher optional utili-
zation percentage, LUCF saves more energy consumption.
However, as shown in Fig. 5b, when the overloaded threshold
is smaller, like 60 percent, the overloaded time ratio is quite

high (around 85 percent), which means hosts are regarded as
overloaded in most time periods and brownout will be trig-
gered frequently. As optional utilization percentage does not
influence overloaded time ratio, we only show the LUCFwith
10 percent optional utilization here. From the results, we
observe a trade-off between energy consumption and over-
loaded ratio time when the overloaded threshold is varied,
and we find out that configuring the overloaded threshold as
70 and 80 percent achieves better trade-offs, which reduces
energy consumption while not triggering brownout too fre-
quently. Therefore, we conduct experiments under 70 and
80 percent overloaded thresholds to compare our proposed
policies in the following section.

7.3.2 Comparison with Proposed Policies

Fig. 6 shows the results with varied overloaded thresholds
and optional utilization percentages for our proposed
policies, we compare the energy consumption, average
response time, maximum of 95th percentile response time
and SLA violations achieved by LUCF, MNCF and RSC. For
the energy consumption, under same optional utilization
percentage, policies with 70 percent overloaded threshold
savemore energy than policies with 80 percent. For example,
when the optional utilization percentage is 10 percent, LUCF
with 70 percent overloaded threshold has 39.7 kWh and
LUCF with 80 percent overloaded threshold has 40.9 kWh. It
is observed that with more optional utilization percentage,
all the policies reduce more energy consumption, and both
LUCF and MNCF save more energy consumption and RSC.
Under 80 percent overloaded threshold, as the energy con-
sumption of LUCF and MNCF is quite close, we conduct the
paired t -tests for them, and the p-values are 0.09, 0.15, 0.1
and 0.09 respectively. Therefore, we conclude that energy
consumption of LUCF andMNCF has no statistically signifi-
cant difference when the overloaded threshold is 80 percent.

For the comparison of average response time and maxi-
mum of 95th percentile response time in Fig. 6b and 6c, poli-
cies with 70 percent overloaded threshold experience more
average response time and maximum of 95th percentile
response time than the ones with 80 percent overloaded
threshold. The average response time of LUCF with
70 percent overloaded threshold ranges from 515 to 621 ms,
while with 80 percent overloaded threshold, it is from 452
ms to 500 ms. When more optional utilization percentage is
configured, the average response time and the maximum of
95th percentile response time is reduced. For instance, with
80 percent overloaded threshold, the average response time

Fig. 5. Algorithm performance comparison.
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of LUCF is reduced from 500 to 452 ms, and the maximum
of 95th percentile response time of MNCF is decreased from
780 to 680 ms. The results show that brownout-based poli-
cies are able to improve response time as well as energy sav-
ing. Fig. 6d illustrates the comparison of SLA violations.
When the overloaded threshold is 70 percent and optional
utilization percentage is 10 percent the SLA violation is
more than 4 percent, as the overloaded threshold and the
optional utilization percentage increase, the SLA violations
are reduced to less than 1 percent.

To conclude, LUCF and MNCF achieve better perfor-
mance than RSC, as RSC selects containers randomly
rather than deterministic methods. LUCF and MNCF have
close energy consumption, but in most cases, LUCF
achieves better performance in response time and SLA vio-
lations than MNCF. The reason lies in that LUCF has more
container deactivation options than MNCF. For different
overloaded thresholds comparison, policies with 70 percent
overloaded threshold save more energy but have the more
average response time, maximum of 95th percentile
response time and SLA violations than policies with 80
percent overloaded threshold. Configuring overloaded
threshold as 80 percent achieves a better trade-off than 70
percent, as it reduces energy consumption while not hav-
ing large average response time. Thus, the following
experiments are conducted under 80 percent overloaded
threshold. Additionally, as LUCF has the best performance
among our proposed policies, we choose LUCF as the rep-
resentative of our proposed algorithms to compare with
benchmark policies.

7.3.3 Final Experiment Results

Fig. 7 and Table 4 present the mean values of energy con-
sumption, average response time, maximum of 95th percen-
tile response time and SLA violations along with 95 percent
CI for the NPA, BOB, Auto-S and LUCF with different
optional utilization percentages. The results demonstrate that
NPA has energy consumption 69.71 kWh with 95 percent CI
(68.94, 70.45), BOB has 49.83 kWh with 95 percent CI (49.06,
50.6), and Auto-S reduces it to 43.95 kWh with 95 percent CI
(43.48, 44.43). LUCF saves more energy consumption than

Auto-S, to be more specific, LUCF with 10 percent optional
utilization leads to 40.36 kWhwith 95 percent CI (40.01, 40.71)
and lowers gradually to 38.6 kWh with 95 percent CI (38.21,
39.01) when optional utilization is 40 percent.

In the comparison of average response time and the
maximum of 95th percentile response time in Fig. 7b and
7c, as NPA has adequate resources, it has the minimum
response time compared with other policies. Its average
response time is 188.8 ms with 95 percent CI (137.4, 240.2)
and its maximum of 95th percentile response time is
312.2 ms with 95 percent CI (178.8, 445.8). As Auto-S
experiences overloads, its average response time and the
maximum of 95th response time are 511 ms with 95 per-
cent CI (502.3, 519.6) and 929.5 with 95 percent CI (840.9,
1018.1) respectively. Taking advantage of brownout,
although BOB and LUCF endure overloads, their brown-
out controllers relieve the overloaded situation. In BOB,
its average response time is reduced to 440.1 ms with 95
percent CI (426.0, 454.1) and its maximum of 95th response
time is 712.4 ms with 95 percent CI (696.8, 727.9). In LUCF
with 40 percent optional utilization percentage, its average
response time and the maximum of 95th response time are
reduced to 431.1 ms with 95 percent CI (415, 447.2) and 687.8
ms with 95 percent CI (661.2, 714.4) respectively. Fig. 7d
presents the SLA violation comparison. NPA does not have
SLA violations, BOB has 1.24 percent with 95 percent CI
(1.098, 1.381), and Auto-S has 4.24 percent with 95 percent CI
(4.098, 4.382) SLA violations. When more optional utilization
is offered, LUCF improves the SLA violations from 2.14 to
0.5 percent in average values.

This is due to the fact that LUCF uses less active hosts as
shown in Fig. 8, which shows the number of active hosts
within one day. For instance, at the time intervals from 400-
500, 6 hosts are active with Auto-S, while LUCF runs 5
active hosts. For NPA and BOB, hosts are always at active
states. From the presented results, we can conclude that the
LUCF achieves better energy consumption than NPA, BOB
and Auto-S. According to response time and SLA violation
comparison, LUCF outperforms Auto-S. Compared with
BOB, LUCF has better performance when optional utiliza-
tion percentage is larger than 30 percent.

Fig. 6. Performance comparison of proposed policies.
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7.4 Scalability

In this section, we evaluate the scalability of the proposed
approach and the efficiency of the algorithm when the num-
ber of nodes is increased. As mentioned in previous sections,
iBrownout is implemented based on Docker Swarm, thus, its
performance depends on the performance of Docker Swarm.
Our aim in this paper is not to discuss the scalability design of

Docker Swarm. In [36], the authors conducted scalability test-
ing onDocker Swarmwith 1,000 nodes and 30,000 containers,
and results show thatDocker Swarm has high scalability.

We evaluate the scalability of iBrownout in terms of the
number of hosts. The experiment settings are almost as
same as in the previous experiments, the overloaded thresh-
old is set as 80 percent and optional utilization percentage is

Fig. 7. Number of active hosts comparison.

TABLE 4
Final Experiment Results

Policy Energy (kWh) Average response time Max of 95th response time SLA violation

NPA 69.71 (68.94,70.45) 188.8 (137.4, 240.2) 312.2 (178.8, 445.8) -
BOB 49.83 (49.06, 50.60) 440.1 (426.0, 454.1) 712.4 (696.8, 727.9) 1.240 (1.098, 1.381)
Auto-S 43.95 (43.48, 44.43) 511.0 (502.3, 519.6) 929.5 (840.9, 1018.1) 4.240 (4.098, 4.382)
LUCF-10 40.36 (40.01, 40.71) 482.1 (471.5, 492.7) 775.4 (746.2, 804.6) 2.140 (2.020, 2.259)
LUCF-20 40.17 (39.87, 40.47) 476.0 (462.4, 489.5) 735.7 (712.2, 759.1) 1.516 (1.340, 1.691)
LUCF-30 39.41 (38.93, 39.89) 451.5 (428.1, 475.0) 721.1 (702.3, 739.9) 1.082 (1.005, 1.158)
LUCF-40 38.60 (38.21, 39.01) 431.1 (415.0, 447.2) 687.8 (661.2, 714.4) 0.494 (0.439, 0.548)

Fig. 8. Number of active hosts comparison.
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30 percent, while the difference lies in the number of hosts,
we conduct experiments with 5, 10 and 15 hosts respec-
tively. Energy consumption and QoS are the main concern
of our proposed approach. Because of page limitation, we
only focus on average response time as QoS metric. In addi-
tion, to compare algorithm efficiency, we also evaluate the
brownout algorithm (LUCF policy) execution time, which
represents the time between brownout is triggered and the
deactivated components are selected.

Fig. 9 and Table 5 show the impact of the varied number
of hosts on energy consumption, average response time and
brownout algorithm execution time. As it can be seen, when
there are more hosts, the energy consumption is increased
and the average response time is reduced, while the brown-
out execution time is kept as stable. The energy consump-
tion is growing from 22.6 kWh with 5 hosts to 53.4 kWh
with 15 hosts, while the average response time is dropping
to 251 ms with 15 hosts from 882 ms with 5 hosts. The rea-
son lies in that when more hosts are running, these hosts
consume more energy, and the benefit is that the average
response time is reduced due to more resources. The brown-
out execution time remains 1.22 s when the number of hots
is varied. As mentioned in Section 6.3.1, although the algo-
rithm complexity of LUCF is relevant to the number of
hosts, the search operation in LUCF only consumes a small
portion of time compared with the network delay to fetch
the information of hosts and containers. Therefore, the
brownout execution time remains stable when the number
of hosts is increased. The results show that iBrownout scales
reasonably well when the number of hosts grows. To be
noted, the master node in Docker Swarm may be the bottle-
neck if there are a number of worker nodes but only one
master node, thus, more nodes should be promoted as mas-
ter nodes to ensure the system scalability.

8 CONCLUSIONS AND FUTURE WORK

Brownout has been proven to be effective to solve the over-
loaded situation in cloud data centers. Additionally, brown-
out can also be applied to reduce energy consumption. In this
paper, we introduced a brownout-based architecture by deac-
tivating optional containers in applications or microservices

temporarily to reduce energy consumption. Under this
architecture, we introduce an integrated approach to man-
aging energy and brownout in container-based clouds. We
also propose several policies to find the suitable containers
to deactivate and evaluate their performance in a prototype
system. The experiment results under real test-beds have
shown that our proposed policies achieve better perfor-
mance in energy consumption, response time and SLA vio-
lations than baselines.

In the future, we plan to explore how brownout approaches
can be applied in existing different approaches that are using
models such as 1) Map-Reduce application 2) Stream-oriented
applicationworkload and 3) Bag of tasks application.
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