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Abstract—Cloud Data centers aim to provide reliable,
sustainable and scalable services for all kinds of applica-
tions. Resource scheduling is one of keys to cloud services.
To model and evaluate different scheduling policies and
algorithms, we propose FlexCloud, a flexible and scalable
simulator that enables users to simulate the process of
initializing cloud data centers, allocating virtual machine
requests and providing performance evaluation for var-
ious scheduling algorithms. FlexCloud can be run on a
single computer with JVM to simulate large scale cloud
environments with focus on infrastructure as a service;
adopts agile design patterns to assure the flexibility and
extensibility; models virtual machine migrations which is
lack in the existing tools; provides user-friendly interfaces
for customized configurations and replaying. Comparing
to existing simulators, FlexCloud has combined features
for supporting public cloud providers, load-balance and
energy-efficiency scheduling. FlexCloud has advantage in
computing time and memory consumption to support large-
scale simulations. The detailed design of FlexCloud is
introduced and performance evaluation is provided.

Index Terms—Cloud Data Centers; Resource Schedul-
ing Algorithms; Virtual Machine Allocation; Performance
Evaluation; Flexibility and Extensibility

I. INTRODUCTION

With various recent advancements in virtualization,

like Grid computing, Web computing, utility computing

and related technologies, Cloud computing obtains great

development. Cloud computing aims to provide both in-

frastructure and services on demand through the Internet

or intranet [3], and its benefits can be concluded as hid-

ing and abstraction of complexity, virtualized resources

and efficient use of distributed resources. Cloud com-

puting allows the sharing, allocation and aggregation of

software, computational and storage network resources

on demand. Currently, quite a few IT enterprises prod-

ucts, like Amazon EC2, Google App Engine, IBM blue

Cloud and Microsoft Azure have shown their practice

of emerging Cloud computing platforms [14]. Whereas

there are many challenging issues to be resolved [3],

Cloud computing is still considered in its infancy.

An essential technology in Cloud datacenter is re-

source scheduling. One challenge problem related to

scheduling in Cloud data center is to consider allocation

and migration of reconfigurable virtual machines and in-

tegrated features of hosting physical machines. Different

from existing load-balancing scheduling algorithms that

consider only physical servers with one factor such as

CPU, the new algorithms treat CPU, memory and net-

work bandwidth integrated for both physical machines

(PMs) and virtual machines (VMs). Besides that, real-

time virtual machine allocation for multiple parallel jobs

and physical machines is taken into consideration. With

the development of cloud computing, the size and density

of the cloud data center become huge, and problems

which need to be solved therewith.

Because of the uncertainty of network environments,

it is extremely hard to do an in-depth research for all

these problems in real Internet platform. In addition, the

network conditions cannot be predicted or controlled ac-

curately, but affect the validation of strategies. A consid-

erate way in research is developing a simulation system,

which supports visualized modeling and simulation in

large-scale applications in cloud infrastructure. Data cen-

ter simulation system can describe the application work-

load statement, which includes user information, data

center position, the amount of users and data centers, and

the amount of resources in each data center. By using

data center simulation system, researchers can evaluate
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suitable strategies such as distributing reasonable data

center resources, selecting data center to match special

requirements, reducing costs, finding efficient scheduling

algorithms and so on.

The major contributions of this paper is the proposal

of a new cloud simulator, FlexCloud, with light weight

design to simulate cloud environment. FlexCloud has

following features:

• FlexCloud is built on Java platform and can be

run on a single computer installed JVM to simulate

large scale cloud infrastructure as a service (IaaS).

A computer with 4 GB memory can simulate large

scale applications. With a 4 GB memory computer,

experiments can simulate scheduling process of

more than 100,000 requests. We have extended

our tests with computers with 2GB memory, that

configuration can simulate requests ranging from

25,000 to 50,000.

• A user-friendly GUI is provided and lots of cus-

tomized configurations can be set to satisfy vari-

ous simulation assumptions. The basic operations

like: select algorithm type, set VM numbers, set

average duration, set start time, set total number of

PMs, select comparison algorithms and indices are

included.

• A scheduling process framework is defined, each

step of process can be extended easily in agile style.

• New scheduling algorithms and performance met-

rics are flexible and extensible to be added

in; currently load-balancing and energy-efficiency

scheduling algorithms are considered.

• Virtual machine migration is modeled, though this

is still lack in current simulation tools.

II. RELATED WORKS

Some research has been conducted in cloud simu-

lation systems. Buyya et al. introduce GridSim [12]

toolkit for modeling and simulation of distributed re-

source management for grid computing. Dumitrescu and

Foster [7] introduce GangSim tool for grid scheduling.

Buyya et al. [13] introduce modeling and simulations

of Cloud computing environments at application lev-

el, a few simple scheduling algorithms such as time-

shared and space-shared are discussed and compared.

CloudSim [13] is one of Cloud computing simulators,

which provides: modeling large-scale cloud computing

infrastructure; models for the data center, service agency,

scheduling and distributing strategies; virtual engines,

which is helpful to create and manage several indepen-

dent and collaborative virtual services in a data center

node; switching flexibly between processing cores with

space-sharing and time-sharing. CloudAnalyst [6] aims

to achieve the optimal scheduling among user groups

and data centers based on the current configuration.

Both CloudSim and CloudAnalyst are based on SimJava

[10] and GridSim [12]. Also CloudSim and Cloud-

Analyst treat a Cloud data center as a large resource

pool and consider only application-level workloads, may

not be suitable for Infrastructure as a service (IaaS)

simulation where each virtual machine as resource is

considered to be requested and allocated. A CloudSim-

based simulation tool considering DVFS energy model

is proposed in [16]. Kliazovich et al. propose an energy-

aware simulation environment named GreenCloud for

Cloud datacenters [8]. Nunez et al. [5] introduce a new

simulator of cloud infrastructure named iCanCloud using

C++ and compare the performance with CloudSim. Di

et al. [15] design a cloud simulation system, GloudSim,

which is based on a one-month Google trace produced

with large scale applications and jobs on hosts.

In our teaching practice in our university, we have

adopted CloudSim, a mature simulator, as a teaching

tool assisted, but according to the students’ feedback,

CloudSim is a bit complex to use and heavy to execute.

That complexity is also a feature of iCanCloud. As

for MDCSim, a commercial tool, is not appropriate

for researching. Apart from that, it’s not easy to use

several languages together in GreenCloud, since it is

implemented with C++ and OTcl.

The main contribution of FlexCloud lies in that it

is implemented with light weight design, flexible to

extend as well as easy to start. Besides the benefits for

teaching, we also cooperate with a company researching

in resource scheduling to boost the functions of Flex-

Cloud under multi-datacenter environment. They would

use FlexCloud to explore suitable algorithms for their

company applications. FlexCloud is an open source tool

that can be fetched from [9].

III. THE ARCHITECTURAL MODEL OF FLEXCLOUD

Fig.1 shows the overview architecture of FlexCloud

with layered components. The top layer is Client Layer

that provides the interface for user to configure requests

properties and have results feedbacks from lower layers.

At this layer, a GUI implemented with Java Swing sup-

ports user to configure algorithm types, set PM and VM

specifications and select scheduling algorithms. After all

settings are completed, the defined configurations would

be submitted to lower layer and a sequence of scheduling

steps would be processed. Comparison diagrams as well

as result outputs would be sent as feedback to Client

Layer. At lower layer, a Requests Broker is implemented
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Fig. 1. Layered FlexCloud architecture

at Broker Layer acting as a mediator between Client

Layer and Scheduler Layer. This Layer is responsible for

verifying the inputs from Client Layer and transforming

the settings into recognized commands at Scheduler Lay-

er. For instance, the number of VM requests submitted

from Client Layer would be written into a configuration

file, which could be read in the process of scheduling

at Scheduler Layer. Scheduler Layer implements the

core functions for FlexCloud system. At this layer, the

scheduling process is defined: VM Requests Generation

component generates the VM requests with configured

properties on user interface; Datacenter Scheduler com-

ponent schedules the particular algorithms to allocate

VMs to corresponding PM according to algorithms; VM

Requests Allocation component manages the allocated

VMs, including checking the allocation conditions and

removing VMs at the end of their lifecycles. At bottom

layer, Resource Layer contains a Resource Management

component providing resource that VM requests require

and supporting services for higher levels. Besides the

component, the physical resource, such as servers, net-

work and storage are resources of the whole system.

Fig.2 shows an application scenario with FlexCloud.

This figure shows three main components: user, Flex-

Cloud scheduler center and other computing centers.

The FlexCloud scheduler center is responsible for the

following main tasks: (1) accepting the VM requests sent

by users; (2) managing computing centers that in service;

(3) finding available computing unit to allocate requests;

(4) sending feedback information to users. Computing

centers represent a pool of Physical Machines (PMs) or

Virtual Machines (VMs), each one configured with a pre-

defined specification such as CPU, memory and storage.

Fig. 2. A scenario architecture with FlexCloud

TABLE I
3 TYPES OF PHYSICAL MACHINES (PMS) SUGGESTED [1]

PM Pool Type Compute Units Memory Storage

Type 1 16 units 30GB 3380GB
Type 2 52 units 136GB 3380GB
Type 3 40 units 14GB 3380GB

Users are represented as component that submits a set of

jobs to be allocated to specific PM in computing center.

These submissions are submitted directly to the Flex-

Cloud scheduler center. Then, the requests are managed

by this module to be allocated to specific PM in the

corresponding data center. After all requests have been

processed, a feedback report would be sent back to the

user.

A. Modeling the datacenter in FlexCloud

From computing resource point of view, a data center

consists of a number of physical servers (PMs), network

devices, storages and other related equipment. A PM

contains several kinds of resources, like CPU, memory,

storage and bandwidth, etc. Before VM requests are

coming, the PMs are at the state of turned-on, which

means the class of Physical Machine is instantiated in

FlexCloud. The number of instances depends on the

number of PMs would provide services.

In TABLE I, the 3 suggested types of heterogeneous

PMs in FlexCloud are listed, and the configuration can

be dynamically set. The type and property values, like

CPU, memory, storage and power, are recorded in a

configuration XML file, which would be loaded into

system. Besides the load balance algorithms, we also

implement energy-saving algorithms that contain a new

property named power consumption. This property is
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added in the configuration XML file and corresponding

methods are added in class PhysicalMachine.

In datacenter model, the left resource capacity decides

whether a VM request can be allocated to that PM. At

initialization stage, PM has a full capacity resource to

offer services. Either the allocation or remove operation

would update the available capacity value and influence

the later requests allocation.

B. Modeling VM requests in FlexCloud

We use a simple example to show how VM re-

quests are modeled in FlexCloud in Fig. 3. Slots

#1,#2, . . . ,#6 represent the time slots in discrete time,

which can be treated as a second or a minute that

requests are in. For instance, VM2 occupies time slot

3 to 5, so lifecycle of VM2 is 3 slots. The value 0.0625

is proportion of resource occupation, meaning that VM2

would occupy 6.25% resource of the PM that it would

be allocated to, during time slot 3 to 5. In our model,

several VM requests can share the capacity of the same

PM at the same time slot only if the capacity is enough.

Fig. 3. an example of VM requests

TABLE II shows the corresponding CPU, memory,

storage values for different VMs. Also for extensible

reason, these property values are also recorded into a

configuration XML file. Once a VM request is allocated

to a PM, the left resource capacity would be decreased

by the value of that request, and the capacity is increased

back when request is released.

In FlexCloud, several VM requests generation ap-

proaches have been implemented, in which requests can

be generated in Poisson, Normal and Random distribu-

tions. When the specific distribution is selected, the start

time or duration of the generated requests would follow

the distribution. Moreover, it’s available for FlexCloud

to import requests data from file in the Generate VMs
step, which means it can be tested under realistic data.

C. Modeling Scheduling Algorithms in FlexCloud

Four kinds of scheduling algorithms are provided

in FlexCloud based on scheduling goals and request

TABLE II
8 TYPES OF VIRTUAL MACHINES (VMS) IN AMAZON EC2 [1]

Compute Units Memory Storage VM Type

1 units 1.7GB 160GB 1-1(1)
4 units 7.5GB 850GB 1-2(2)
8 units 15GB 1690GB 1-3(3)
6.5 units 17.1GB 420GB 2-1(4)
13 units 34.2GB 850GB 2-2(5)
26 units 68.4GB 1690GB 2-3(6)
5 units 1.7GB 350GB 3-1(7)
20 units 7GB 1690GB 3-2(8)

types. For request types, scheduling algorithms can be

divided into online algorithms and offline algorithms, the

difference lies in whether the requests information is all

known before scheduling. Requests would come and be

operated one by one in online algorithm, while requests

sequence can be adjusted by processing time or end time

because all requests information have been collected

before scheduling in offline algorithms. Another division

principle is via goal: we consider load balancing and

energy saving in FlexCloud.

When comparing the effects of different algorithms,

the scheduling process would be same except that the

scheduling algorithms are different. For online load

balancing comparison, Random, Round-Robin (Round),

List Scheduling (LS) algorithms have been implement-

ed. Under the layered architectural model and related

design pattern (introduced in later section), new created

algorithms can be added to scheduling algorithm library,

without influencing other existed algorithms.

D. Performance Metrics in FlexCloud

In this section, we introduce the major performance

metrics we used in FlexCloud:

For load balancing algorithms:

Average utilization: Each PM would have the utilization

value in scheduling process, and average utilization is

the arithmetic average value of all PMs in the data

center;

PM resource: PMi(i, PCPUi, PMemi, PStoragei),
i is the index number of PM, PCPUi, PMemi,

PStoragei are the CPU, memory, storage capacity of

that a PM can provide.

VM resource:

VMj(j, V CPUj , V Memj , V Storagej , T
start
j , T end

j ),
j is the VM type ID, V CPUj , V Memj , V Storagej
are the CPU, memory, storage requirements of VMj ,

T start
j , T end

j are the start time and end time, which are

used to represent the life cycle of a VM.

Time slot: we consider a time span from 0 to T be
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divided into parts with same length. Then n parts can

be defined as [(t1− t0), (t2− t1), . . . , (tn− tn−1)], each

time slot Tk means the time span (tk − tk−1).
Average CPU utilization of PMi during slot 0 and Tn:

PCPUU
i =

∑n
k=0(PCPUTk

i × Tk)∑n
k=0 Tk

(1)

And memory PMemU
i and storage PStorageUi utiliza-

tion of both PMs and VMs can be computed in the same

way. Similarly, average CPU utilization of a VM can be

computed.

Integrated load imbalance value ILBi of PMi: The

variance is widely used as a measure of how far a set of

values is spread out from each other in statistics. Using

variance, an integrated load imbalancing value ILBi of

server i is defined

ILBi =
(Avgi − CPUA

u )2

3
+

(Avgi −MemA
u )

2

3

+
(Avgi − StorageAu )

2

3
(2)

where

Avgi =
PCPUU

i + PMemU
i + PStoargeUi

3
(3)

and CPUA
u ,MemA

u , Storage
A
u are respectively the av-

erage utilization of CPU, memory and storage in a Cloud

data center.

ILBi is applied to indicate load imbalance level compar-

ing utilization of CPU, memory and network bandwidth

of a single server itself.

Makespan: is as same as traditional definition, and there-

fore the capacity makespan of all PMs can be formulated

as below:

capacity makespan = max
i

(Li) (4)

Load efficiency (skew of makespan): is defined as the

(minimal average load divided by maximal average load)

on all machines:

skew(makespan) =
mini(Li)

maxi(Li)
(5)

where Li is the load of PM i. Skew shows the load

balancing efficiency to some degree.

Capacity makespan: In any allocation of VM requests to

PMs, we can let A(i) denote the set of VM requests al-

located to machine PMi, under this allocation, machine

PMi will have total loads,

Li =
∑

j∈A(i)

cjtj (6)

TABLE III
THEORETICAL AND SIMULATION RESULTS COMPARISON OF LS

ALGORITHM

LS Indices Theoretical Simulation

Average Utilization 0.5 0.5
Imbalance Degree 0.0 0.0
Makespan 0.5 0.5
Skew(makespan) 1 1
Capacity makespan 50 50
Skew(capacity makespan) 1 1

TABLE IV
THEORETICAL AND SIMULATION RESULTS COMPARISON OF LPT

ALGORITHM

LPT Indices Theoretical Simulation

Average Utilization 0.505 0.505
Imbalance Degree 0.0 0.0
Makespan 1 1
Skew(makespan) 1 1
Capacity makespan 50.5 50.5
Skew(capacity makespan) 1 1

For energy saving algorithms, some indices are also

provided, like energy consumption, numer of PM turned

on and etc, because of page limitation, we omit the

detailed introduction here. Other metrics could also be

included for further research.

IV. VALIDATION OF FLEXCLOUD

To validate the accuracy of FlexCloud, we have

designed some test cases to compare the theoretical

results and simulation results. In this section, we use LS

(List Scheduling), LPT(Longest Processing Time First),

EDF(End-time Decreasing First) algorithms to compare

theoretical and simulation results.

The test cases we designed are easily theoretically

calculated and can reflect some general situations. For

LS algorithm that always allocate a VM to the PM with

the lowest load, we set that there are 100 PMs and

100 VMs requests both in the same types, the start-

time of requests are ordered in increasing sequence,

1, 2, 3, . . . , 100, and all requests duration are 100 and

require capacity is 0.5 of a PM. Since PMs number and

VMs number are same in this case, LS algorithm works

as Round-Robin algorithm, that means each PM would

undertake a VM task. Then we calculate the values in

theoretical way and simulation, same results have been

observed and shown in TABLE III.

We also design a test case for LPT algorithm, an

offline algorithm that VM requests can be reordered by

processing time before they are allocated. In this case,
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TABLE V
THEORETICAL AND SIMULATION RESULTS COMPARISON OF EDF

ALGORITHM

EDF Indices Theoretical Simulation

Power Consumption 250000 250000
Rejected Number 10 10
Turned on PMs 20 20

there are 50 PMs and 100 VMs both in the same types,

each request requires 0.5 capacity of a PM and starts at

1, 2, 3, . . . , 100, and the durations of VMs are ordered in

decrease order from 100 to 1 as 100, 99, 98, . . . , 1. Same

results have been observed and collected in TABLE IV.

For energy saving algorithm EDF, it should be noticed

that comparison indices are different and requests are

ordered by end-time. In this case, we set that there

are 20 PMs and 50 VMs both in the same types,

the start-times of VM requests are ordered in increas-

ing as 1, 2, 3, . . . , 50 and end-times are decreasing as

100, 99, 98, . . . , 51. Each VM requires 0.5 capacity of

a PM. We adopt the energy saving model referred to

[2] and assume host minimum power Pmin = 300,

host maximum power Pmax = 500. Same theoretical

and simulation values have been collected in TABLE V.

Referring to the collected data in TABLE IV and V, the

results show the correctness of FlexCloud.

V. EVALUATIONS

To extend performance evaluations, we also com-

pare scheduling algorithms performance with advanced

settings and collect the comparison data. The related

settings are as following:

1) Algorithm type is offline load balancing;

2) PM specifications: using suggested specifications in

Amazon EC2 shown in Table I. PMs with different

numbers are considered. PMs numbers are varying from

15, 30, 60 to 240 and each type of PMs occupies about

1/3 of total PMs numbers;

3) VM requests: using suggested specifications in Ama-

zon EC2 shown in Table II. We adopt the log data at

Experimental System Lab (ESL) [11] data, which has

been used in hundreds of studies, to reflect realistic data

generation. The log contains months of records collected

by a large Linux cluster and has characteristics consistent

with our problem model. Each line of data in that log file

includes 18 elements, while we only need the request-ID,

start-time, duration and number of processors (capacity

demands) in our simulation. We convert the units from

seconds in ESL log file into minutes, as we design 5

minutes to be a time slot length;

4) Algorithms for comparison: RoundRobin (R-R),

Longest Processing Time first (LPT, referring to sec-

tion IV), Post Migration Algorithm (MIG, virtual ma-

chine migration is implemented) [4], Capacity makespan

Prepartition Algorithm (CMP, partiton the requests be-

fore allocation) [17];

5) Indices for comparison: average utilization, imbalance

degree, longest process time and capacity makespan.

Fig.4 and Fig.5 show the average utilization, imbal-

ance degree, makespan and capacity makespan compar-

ison for different algorithms with ESL data trace. From

these figures, we can notice that CMP algorithm has bet-

ter performance than other algorithms in average utiliza-

tion, imbalance degree, makespan, capacity makespan.

CMP algorithm has 10%-20% higher average utiliza-

tion than MIG and LPT, and 40%-50% higher aver-

age utilization than Random-Robin (R-R). Prepartition

algorithm has 10%-20% lower average makespan and

capacity makespan than MIG and LPT, and 40%-50%
lower average makespan and capacity makespan than

R-R. The results lie in that R-R is the simplest algo-

rithm with quite limited load balancing effects, the MIG

balances better than LPT as it has migration process to

reallocate loads after the LPT allocation process, as for

CMP, it works in a much more refined and desired scale

by prepartion based on reservation data while MIG is a

best-effort trial by migration.

VI. CONCLUSIONS AND FURTHER WORK

In this paper, we introduce the FlexCloud, a novel

simulator for performance evaluation of virtual machine

allocation in Cloud data centers. It is flexible, scalable

to simulate resource scheduling in cloud data centers.

A complete simulation framework has been built and

introduced.

There are a few research directions for extending the

simulator:

• Considering more scheduling algorithms. In Flex-

Cloud, we already implemented load-balancing and

energy-efficiency, other scheduling algorithms such

as cost-oriented or reliability-oriented algorithms

can be added in easily.

• Providing more visual outputs such as dashboards

and logical view of different data centers and their

resource usages. This information is very important

for managers and operators to have.

• Considering more infrastructures, such as network-

ing devices. Currently FlexCloud considers band-

width requests and allocations. The network devices

such as three-tire switches and routers distributed in

different data centers are under consideration.
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Fig. 4. The offline algorithm comparison of average utilization (a) and imbalance degree (b) with ESL trace

Fig. 5. The offline algorithm comparison of makespan (a) and capacity makespan (b) with ESL trace
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