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A Toolkit for Modeling and Simulation of Real-Time
Virtual Machine Allocation in a Cloud Data Center
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Abstract—Resource scheduling in infrastructure as a service
(IaaS) is one of the keys for large-scale Cloud applications. Ex-
tensive research on all issues in real environment is extremely
difficult because it requires developers to consider network in-
frastructure and the environment, which may be beyond the
control. In addition, the network conditions cannot be predicted
or controlled. Therefore, performance evaluation of workload
models and Cloud provisioning algorithms in a repeatable manner
under different configurations and requirements is difficult. There
is still lack of tools that enable developers to compare different
resource scheduling algorithms in IaaS regarding both computing
servers and user workloads. To fill this gap in tools for evalua-
tion and modeling of Cloud environments and applications, we
propose CloudSched. CloudSched can help developers identify
and explore appropriate solutions considering different resource
scheduling algorithms. Unlike traditional scheduling algorithms
considering only one factor such as CPU, which can cause hotspots
or bottlenecks in many cases, CloudSched treats multidimensional
resource such as CPU, memory and network bandwidth inte-
grated for both physical machines and virtual machines (VMs)
for different scheduling objectives (algorithms). In this paper,
two existing simulation systems at application level for Cloud
computing are studied, a novel lightweight simulation system is
proposed for real-time VM scheduling in Cloud data centers, and
results by applying the proposed simulation system are analyzed
and discussed.

Note to Practitioners—This paper was motivated by the problem
of simulating scheduling algorithms in Cloud data centers to eval-
uate their performance for different metrics. Existing tools such
as CloudSim [4] and CloudAnalyst [13], are based on SimJava [8]
and GridSim [3], which treat a Cloud data center as a large re-
source pool and consider only application-level workloads, may not
be suitable for IaaS simulation where each VM as a resource is re-
quested and allocated. There is still lack of tools that enable devel-
opers to evaluate requirements of large-scale Cloud applications
in terms of comparing different resource scheduling algorithms
regarding geographic distribution of both computing servers and
user workloads. To fill this gap in tools for evaluation and mod-
eling of Cloud environments and applications, in this paper we
propose CloudSched, for dynamic resource scheduling in Cloud
datacenter. Real-time constraint of both VMs and PMs, which is
often neglected in literature, is considered in this paper. The main
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contributions of this paper are: proposing a simulation system for
modeling Cloud computing environments and performance eval-
uation of different resource scheduling policies and algorithms;
focusing on simulation of scheduling in IaaS layer where related
tools are still lack; designing and implementing a lightweight simu-
lator combining real-time multidimensional resource information.
CloudSched offers the following novel features: (i) modeling and
simulation oflarge scale Cloud computing environments, including
data centers, VMs and physical machines; (ii) providing a platform
for modeling different resource scheduling policies and algorithms
at IaaS layer for Clouds; and (iii) both graphical and textual out-
puts are supported.

Index Terms—Cloud computing, data centers, dynamic and real-
time resource scheduling, lightweight simulation system.

[. INTRODUCTION

LOUD computing is developed based on various re-
C cent advancements in virtualization, Grid computing,
Web computing, utility computing and related technologies.
Cloud computing provides both platforms and applications
on demand through the Internet or intranet [1]. Some of the
key benefits of Cloud computing include the hiding and ab-
straction of complexity, virtualized resources and efficient use
of distributed resources. Some examples of emerging Cloud
computing platforms are Google App Engine [23], IBM blue
Cloud [24], Amazon EC2 [21], and Microsoft Azure [25].
Cloud computing allows the sharing, allocation and aggrega-
tion of software, computational and storage network resources
on demand. Cloud computing is still considered in its infancy
as there are many challenging issues to be resolved [1], [2], [5].
Youseff ef al. [17] establish a detailed ontology of dissecting
Cloud into five main layers from top to down: Cloud application
(SaaS), Cloud software environment (PaaS), Cloud software
infrastructure (laaS), software kernel and hardware (HaaS),
and illustrates their interrelations as well as their interdepen-
dency on preceding technologies. In this paper, we focus on
Infrastructure as a service (IaaS) in Cloud data centers. Cloud
data center can be a distributed network in structure, which is
composed of many computing nodes (such as servers), storage
nodes, and network devices. Each node is formed by a series
of resources such as CPU, memory, network bandwidth and so
on. Each resource has its corresponding properties. There are
many different types of resources for Cloud providers. This
paper focuses on the laaS. The definition and model defined
by this paper are aimed to be general enough to be used by a
variety of Cloud providers.
In a traditional data center, applications are tied to specific
physical servers that are often overprovisioned to deal with
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workload surges and unexpected failures [10]. Such config-
uration rigidity makes data centers expensive to maintain
with wasted energy and floor space, low resource utilizations
and significant management overheads. With virtualization
technology, today’s Cloud data centers become more flexible,
secure and on-demand allocating.

One key technology plays an important role in Cloud data-
center is resource scheduling. One of the challenging scheduling
problems in Cloud data center is to consider allocation and mi-
gration of reconfigurable virtual machines (VMs) and integrated
features of hosting physical machines.

It is extremely difficult to research widely for all these
problems in real Internet platform because the application
developers can’t control and process network environment.
What is more, the network conditions cannot be predicted or
controlled, but affect the quality evaluation of strategies. The re-
search of dynamic and large-scale distributed environment can
be achieved by building data center simulation system, which
supports visualized modeling and simulation in large-scale
applications in cloud infrastructure. Data center simulation
system can describe the application workload statement, which
includes user information, data center position, the amount of
users and data centers, and the amount of resources in each
data center. Using this information, data center simulation
system generates response requests and allocates these requests
to VMs. By using data center simulation system, application
developers can evaluate suitable strategies such as distributing
reasonable data center resources, selecting data center to match
special requirements, reducing costs and so on.

A. Related Work

There are quite many research conducted in scheduling algo-
rithms. Most of them are for traditional web servers or server
farms. Beloglazov et al. [2] introduce heuristics algorithms
and challenging issues for resource allocation in Cloud com-
puting. Prodan ef al. [20] model the workflow problem in Grid
computing as an extension of the multiple-choice knapsack
problem and propose a general bicriteria scheduling heuristic
called dynamic constraint algorithm (DCA) based on dynamic
programming. Zhu et al. [18] treat outpatient scheduling as
a collaborative activity and create a qualification matrix to
apply the group role assignment algorithm. Cao et al. [19]
propose dynamic control of resource scheduling and allocation
in data streaming to avoid resource shortage and overprovi-
sion. Buyya et al. introduce GridSim [3] toolkit for modeling
and simulation of distributed resource management for grid
computing. Dumitrescu and Foster [6] introduce GangSim tool
for grid scheduling. Buyya et al. [4] introduce modeling and
simulations of Cloud computing environments at application
level, a few simple scheduling algorithms such as time-shared
and space-shared are discussed and compared. CloudSim [4] is
one of Cloud computing simulators, which has the following
functions: supporting modeling large-scale cloud computing
infrastructure, both in a single physical computing node and
Java virtual machine data center; modeling for the data center,
service agency, scheduling and distributing strategies; pro-
viding virtual engines, which is helpful to create and manage
several independent and collaborative virtual services in a data
center node; be able to switch flexibly between processing
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Fig. 1. A simplified layered architecture of CloudSched.

cores with space-sharing and time-sharing. CloudAnalyst [6]
aims to achieve the optimal scheduling among user groups and
data centers based on the current configuration. Both CloudSim
and CloudAnalyst are based on SimJava [8] and GridSim [3],
which treat a Cloud data center as a large resource pool and
considers only application-level workloads, may not be suitable
for Infrastructure as a service (IaaS) simulation where each
VM as a resource is requested and allocated. Wood et al. [14]
introduced techniques for VM migration and proposed some
migration algorithms. Zhang [15] compared major load balance
scheduling algorithms for traditional web servers. Singh et al.
[10] proposed a novel load balancing algorithm called Vec-
torDot for handling the hierarchical and multidimensional
resource constraints by considering both servers and storage in
Cloud computing.

The organization of remaining parts of this paper is as
follows. Section II introduces CloudSched architecture and its
main features, Section III discusses performance measurement
of different scheduling algorithms, Section IV presents design
and implementation of CloudSched, Section V discusses the
simulation results by comparing a few different scheduling
algorithms, and finally a conclusion is provided in Section VI.

II. CLOUDSCHED ARCHITECTURE AND MAIN FEATURES

The simplified layered architecture is shown in Fig. 1.

1) User Interface. At the top layer, there is an interface for a
user to select resource and send requests, basically, a few
types of VMs are preconfigured for a user to choose.

2) Core layer of Scheduling. Once user requests are initiated,
they go to next level—CloudSched scheduling, which is
responsible to choose appropriate data centers and phys-
ical machines based on user requests. CloudSched provides
support for modeling and simulation of Cloud data centers,
especially allocating VMs (consisting of CPU, memory,
storage and bandwidth, etc.) to suitable physical machines.
This layer can manage a large scale of Cloud data centers
consisting of thousands of physical machines. Different
scheduling algorithms can be applied in different data cen-
ters based on customers’ characteristics.
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3) Cloud Resource. At the lowest layer, there are Cloud re-
sources which include physical machines and VMs, both
of them consisting of certain amount of CPU, memory,
storage, and bandwidth, etc.

Some other tools such as CloudSim and CloudAnalyst
are based on existing simulation tools such as JavaSim and
GridSim, which makes the simulation system very large and
complicated. In view of these, CloudSched is lightweight
design with focus on resource scheduling algorithms. The main
features of CloudSched are the following.

* Focusing on IaaS layer. Unlike existing tools which focus
on application (task) level such as CloudSim and Cloud-
Analyst, CloudSched focuses on scheduling VMs at [aaS
layer, i.e., each request needs one or more VMs, while each
request only occupies a portion of the total capacity of a
VM in CloudSim and CloudAnalyst.

* Providing an uniform view of all resources. Similar to
Amazon EC2 [21] real applications, CloudSched provides
an uniform view of all physical and virtual resources so that
both system management and user selections are simpli-
fied. We will explain this in details in the following section.

* Lightweight design and scalability. Comparing to other
existing simulation tools such as CloudSim and CloudAna-
lyst which are built on GridSim, CloudSched is focusing on
resource scheduling polices and algorithms. CloudSched
can simulate tens of thousands of requests in a few minutes.

* High extensibility. Modular design is applied in Cloud-
Sched. Different resource scheduling policies and algo-
rithms can be compared with each other for performance
evaluation.

* Easy to use and repeatable . CloudSched enables users
to set up simulation easily and quickly with easy to use
graphical user interfaces and outputs. It can accept inputs
from text files and output to text files. CloudSched can save
simulation inputs and outputs so that modelers can repeat
experiments. CloudSched ensures that repeated simulation
yield identical results. Some GUIs are shown in Figs. 2 and
3 for illustrations.

A. Modeling Cloud Data Centers

The core hardware infrastructure related to the Cloud is mod-
eled in the simulator by a data center component for handling
VM requests. A data center is mainly composed by a set of hosts,
which are responsible for managing VMs during their life cy-
cles. A host is a component that represents a physical computing
node in a Cloud: it is assigned a preconfigured processing capa-
bility (expressed in computing power in CPU units), memory,
bandwidth, storage, and a scheduling policy for allocating pro-
cessing cores to VMs. A VM can be represented in a similar
way.

B. Modeling VM Allocation

With virtualization technologies, Cloud computing provides
flexibility in resource allocation. For example, a PM with two
processing cores can host two or more VMs on each core con-
currently. Only if the total used amount of processing power by
all VMs on a host is not more than available capacity in that
host, VMs can be allocated. Taking the widely used example

Set the Number of Each Type Physical Machine

| | Set Default
PM Typel: CPU 16.0GHZ Memory 58.0GB Bandwidth 3380.0MB 50
PM Typel: CPU 52.0GHZ Memory 136.8GB Bandwidth 3380.0MB 25

PM Typel: CPU 40.0GHZ Memory 14.0GB Bandwidth 3380.0MB 25
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Fig. 2. Main interface of CloudSched (1).
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Fig. 3. Main interface of CloudSched (2).

of Amazon EC2 [21], we show that a uniform view of different
types of VMs is possible. Table I shows eight types of VMs from
Amazon EC2 online information. We can therefore form three
types of different PMs (or PM pools) based on compute units. In
areal Cloud data center, for example, a physical machine with 2
X 68.4 GB memory, 16 cores x 3.25 units, 2 X 1690 GB storage
can be provided. In this or similar way, a uniform view of dif-
ferent types of VMs is possibly formed. This kind of classifi-
cation provides a uniform view of virtualized resources for het-
erogeneous virtualization platforms, e.g., Xen, KVM, VM Ware,
etc., and brings great benefits for VM management and alloca-
tion. Customers only need selecting suitable types of VMs based
on their requirements. There are eight types of VMs in EC2, as
shown in Table I, where MEM is for memory with unit GB, CPU
is normalized to unit (each CPU unit is equal to 1 GHz 2007
Intel Pentium processor [21]) and Sto is for hard disk storage
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TABLE 1
EIGHT TYPES OF VIRTUAL MACHINES (VMS) IN AMAZON EC2

[ MEM (GB) | CPU (units) [ BW(ESTO) [ VM|
1.7 1 (1 cores x 1 units) 160 1-1(1)
7.5 4 (2 cores x 2 units) 850 1-2(2)
15.0 8 (4 cores x 2 units) 1690 1-3(3)
17.1 6.5 (2 cores x 3.25 units) | 420 2-1(4)
34.2 13 (4 cores x 3.25 units) | 850 2-2(5)
68.4 26 (8 cores x 3.25 units) 1690 2-3(6)
1.7 5 (2 cores x 2.5 units) 350 3-1(7)
7.0 20 (8 cores x 2.5 units) 1690 3-2(8)

TABLE II
THREE TYPES OF PHYSICAL MACHINES (PMS) SUGGESTED

[ CPU (units) | MEM (G)| BW (STO) | Prin | Prmaz |

16 (4 cores x 4 units) 30 3380G 210W | 300W
52 (16 cores x 3.25 units) | 136.8 3380G 420W | 600W
40 (16 cores x 2.5 units) | 14 3380G 350W | S500W

with unit GB. Three types of PMs are considered for heteroge-
neous case, as shown in Table II. Currently, CloudSched imple-
ments dynamic load-balancing scheduling algorithms, utiliza-
tion maximization and energy-efficient scheduling algorithms.
Other algorithms such as reliability-oriented and cost-oriented,
etc., can be applied as well.

C. Modeling Customer Requirements

CloudSched models customer requirements by randomly
generating different types of VMs, and allocates VMs based on
appropriate scheduling algorithms in different data centers. The
arrival process, service time distribution, and required capacity
distribution of requests can be generated according to random
processes. The arrival rate of customers’ requests can be con-
trolled. Distribution of different types of VM requirements
can be set too. A real-time VM request can be represented
in an interval vector: vimID(VM typelD, start-time, end-time,
requested capacity). For example, vim1(1, 0, 6, 0.25) shows that
the request ID is 1, VM is of type 1 (corresponding to integer
1), start-time is 0 and end-time is 6 (here 6 means the end-time
is the sixth slot). Other requests can be represented in similar
ways. Fig. 4 shows the life cycles of VM allocation in a slotted
time window using two PMs, where PM#2 hosts vm4, vm5,
and vmo6, while PM#1 hosts vm1, vm2, and vm3. Notice that at
any slot, the total capacity constraint of a PM has to be met by
all VMs allocated on it, and each VM has a start-time, end-time
constraint.

III. PERFORMANCE METRICS FOR DIFFERENT
SCHEDULING ALGORITHMS

Unlike traditional scheduling algorithms considering only
one factor such as CPU, which can cause hotspots or bottlenecks
in many cases, CloudSched treats multidimensional resources
such as CPU, memory and network bandwidth integrated for
both physical machines and VMs. There is still lack of related
metrics for scheduling algorithms considering multidimen-
sional resource. For different objectives of scheduling, there
are different metrics. In the following, we consider metrics for
load-balancing, energy-efficient and utilization maximization.
Other metrics for different objectives can be extended easily.

vm2 (§1, 4,

PM#1 umiicL0;

vm3 (1,3, 8, 05)

fvma (2, 3, 6, 0.5

PM#2

vm5 (2,4, 8, 0.25)

time

0 1 2 3 4 5 6 7 8 9 10

Fig. 4. An example of user requests and allocation.

A. Metrics for Multidimensional Load-Balancing

In the view of advantages and disadvantages of existing met-
rics for resource scheduling [10], [12], [14], [16], [28], inte-
grated measurement for total imbalance level of Cloud data
center as well as average imbalance level of each server are de-
veloped for load-balancing strategy. Other metrics for different
scheduling strategies can be developed as well. The following
parameters are considered.

1) Average CPU utilization (CPUY) of a single CPU i: is
averaged CPU utilization during an observed period. For
example, if the observing period is one minute and CPU
utilization is recorded every 10 s, then C'PU} is the av-
erage of six recorded values of CPU <.

2) Average utilization of all CPUs in a Cloud datacenter. Let
CPU; be the total number of CPUs of server ¢, then the
average utilization of all CPUs on server ¢ is

sYeruYopur
SNepur

crUL = (1)
where N is the total number of physical servers in a Cloud
datacenter. Similarly, average utilization of memory,
network bandwidth of server z, all memories and all net-
work bandwidth in a Cloud datacenter can be defined as
MEMY , NETY, MEM*, NET2, respectively.

3) Integrated load imbalance value ({LB;) of server ¢. Vari-
ance is widely used as a measure of how far a set of num-
bers is spread out from each other in statistics. Using vari-

ance, an integrated load imbalance value (/L B;) of server
¢ is defined

(Avgi—CPUM +(Avg;— MEM2)® + (Avg;— NETA)”

& @

where

CPUY + MEMP + NETV
Aug, = LCPY : Do
3
(ILB;) is applied to indicate load imbalance level com-
paring utilization of CPU, memory and network bandwidth
of a single server itself.
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4) The imbalance value of all CPUs, memories and network
bandwidth. Using variance, the imbalance value of all
CPUs in a data center is defined as

N
IBLepy = Y (OPUY — 0PUL)?. )

i

Similarly, imbalance values of memory (IB Ly, ) and
network bandwidth (7BL,.:) can be calculated. Then,
total imbalance values of all servers in a Cloud datacenter
is given by

N
IBLiy = Y ILB;. (5)

5) Average imbalance value of a physical server ¢. The av-
erage imbalance value of a physical server 7 is defined as

IBL
PM _ tot
IBLLY = —

where N is the total number of servers. As its name sug-
gests, this value is used to measure average imbalance level
of all physical servers.

6) Average imbalance value of a Cloud datacenter (CDC).
The average imbalance value of a Cloud datacenter (CDC)
is defined as

(6)

IBLepy + IBLy e, + IBL
cDC _ CPU e net
IBLEDC = = ,

7) Average running times. Average running time of pro-
ceeding same amount of tasks can be compared for
different scheduling algorithms.

8) Makespan. In this paper, it is defined as the maximum load
(or average utilization) on any PM.

9) Utilization efficiency. It is defined as (the minimum load
on any PM) divides (maximum load on any PM) in this
case.

Q)

B. Metrics for Energy-Efficiency

1) Energy consumption model.
Most of energy consumption in data centers is from com-
putation processing, disk storage, network, and cooling
systems. In [5], authors proposed a power consumption
model ( P) for blade server

14.540.2Uc pyy+(4.5¢ %) Upnerm +0.003U i1 +(3.1e ") Uper

(®)

where Ucpy, Unmem s Udisk, Uner are utilization of CPU,

memory, hard disk, and network interface respectively. It

can be seen that other factors such as memory, hard disk

and network interface have very small impact on total en-

ergy consumption. In [3], authors found that CPU utiliza-

tion is typically proportional to the overall system load, and
proposed a power model as follows:

PU) = kPuax + (1 — k) PaxU )

where Pp,,x is the maximum power consumed when the
server is fully utilized; % is the fraction of power consumed

by the idle server (studies show that on average it is about
0.7); and U is the CPU utilization. In real environment, the
utilization of the CPU may change over time due to the
workload variability. Thus, the CPU utilization is a func-
tion of time and is represented as u(t). Therefore, the total
energy consumption by a physical machine (F;) can be
defined as an integral of the energy consumption function
over a period of time as:

t1

E;, = /P(u(t)) dt

to

(10)

If u(t) is constant over time (for example, average utiliza-
tion is adopted, u(t) = w), then F; = P(u)(t1 — to).

2) The total energy consumption of a Cloud data center is
computes as

Ecdc = ZEL (11)
i=1

It is the sum of energy consumed by all PMs. Notes that
the energy consumption of all VMs on PMs is included.

3) The total number of PMs used. This is the total number of
PMs used for the given set of VM requests. It is important
for energy-efficiency.

4) The total power-on time of all PMs used. Based on energy
consumption equation of each PM, the total power-on time
is the key factor.

C. Metric for Maximizing Resource Utilization

1) Average resource utilization. Average utilization of CPU,
memory, hard disk, and network bandwidth can be com-
puted and an integration utilization of all these resources
can be used too.

2) The total number of PMs used. It is closely related to the
average and whole utilization of a Cloud data center.

D. Metrics for Confidence Intervals

Also confidence intervals can be calculated for different met-
rics as follows: Let 21, 2, 23, . . ., x,, be the calculated metrics
(suchas IBLy,; and F.4. values, etc.) from n times of repeated
simulations. Then, the mean is

1 n
Tmean = g Z Ty (12)
=1
and the standard deviation s is
» Lmean — Ly 2
i Pl_m ) -
n—1
and the confidence interval at 95% confidence is given by
1.96—> 1.96- (14)
Tmean — L IO——, Tmean . =
vn vn

IV. DESIGN AND IMPLEMENTATION OF CLOUDSCHED

In this section, we provide details related to the design and im-
plementation of CloudSched. A Java discrete simulator is imple-
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Fig. 5. UML diagram of main resources in Cloud Data Centers.
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Fig. 6. Detailed UML diagram of main resources in Cloud Data Centers.

mented. In the following, major building blocks of the Cloud-
Sched are described briefly.

A. Scheduling Process in Cloud Datacenter

We consider PMs and VMs as IaaS resource, use the same ar-
chitecture of Cloud data centers, resource scheduling process as
proposed in [12]. Figs. 5 and 6 show general and detailed UML
diagram of main resources in Cloud data centers, respectively.

B. Scheduling Algorithms—Taking LIF Algorithm as an
Example

Fig. 7 shows the pseudocodes of LIF (least imbalance-level
first) algorithm [28] for dynamic load-balance of a Cloud data
center. Inputs to the algorithm include current VM request ,
status of current active tasks and physical machines. For dy-
namic scheduling, the output is placement scheme for request
r. Basically, the algorithm dynamically finds the lowest total

Algorithm : Lowest-Average-Value-First (r)
Input: placement request r = (id, t_s, t_e, k);
status of current active tasks and PMs
Output: placement scheme for r and IBL_tot.
1: initialization: LowestAvg = large number;

2: FOR i=1:NDO

3: IF request r can be placed on PM (i)
4 THEN

5 compute avg(i) utilization value of PM(i) using equations (1)-(3);
6: IF avg(i)<LowestAvg

7: THEN

8 LowestAvg=avg(i);

9: allocatedPMID=i;

10: ELSE

11: ENDIF

12:  ELSE //find next PM

13: ENDFOR

14: IF LowestAvg== large number L // cannot allocate
15: THEN put r into waiting queue or reject
16: ELSE place r on PM with allocatedPMID and compute IBL_tot

Fig. 7. LIF algorithm.

CreateRandVM VmTaskinfo BalanceLevel
VirtualMachine ScheduleDomain PrintPM
Server AllocateAlg Record |
PhysicalMachine Migrate Sort |

Fig. 8. Main class diagram.

imbalance value of the datacenter when placing a new VM re-
quest by comparing different imbalance values if the request is
allocated to different physical machines. Actually, the algorithm
finds a PM with the lowest integrated-load, this will make the
total imbalance-value of all servers in a Cloud data center the
lowest. Fig. 8 shows main class diagram of VM allocation of
scheduling algorithm. Class ScheduleDomain consists of main
methods; it handles tasks in each queue by calling other classes.
Class CreateRandVM, and VmTaskInfo, generate task requests.
Class Allocate and Sort allocate the requests of VMs; Class
Migrate and Allocate Alg can migrate VMs; Record, PrintPM,
and BalanceLevel are responsible for printing and output func-
tions; Server, Physical Machine, and Virtual Machine accom-
plish functions of physical servers and VMs. Fig. 9 shows one
of the interfaces of configuring Cloud data centers in Cloud-
Sched. First, a data center is selected (by manager) using dif-
ferent IDs, then the number of and types of PMs are set up.
Manager can also add/delete data centers. Fig. 10 shows one
of the interfaces of configuring user requests. Probability dis-
tribution of each types of VMs, the total number of simulated
VMs and preferred data centers can be set up. For simulation,
once the probability distribution of each types of VMs and total
number of all VMs are given, the number of VMs for each type
can be easily computed.
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ID |small PM num | large PM num |ex-large PM num |Area ‘ DataCenter ID(int) 1

number of small PMs(int) 100

number of large PMs(int) 20

number of ex-large PMs(int) 20

Area (South, North etc)

Add DataCenter
Delete DataCenter
Submit

Fig. 9. One interface of configuring Cloud Data Centers.

the user requests

CPU Mem BandWidth Probability Nearest data centers
VM1 1GHz 176 100M 02 1 -
VM2 4GHz 756 100M 5 ==
VM3 8GHz 156 100M 05 3 -
VM4 5GHz 176 100M 1 -
VM5 20GHz 76  100M 1 -
VM6 6.5GHz 17.1G 100M 1 —
VM7 13GHz 342G 100M 1 —
VM8 26GHz 68.4G 100M 1 -

The total number of simulated VM 10

Submit task requests

Fig. 10. One interface of configuring user requests

V. PERFORMANCE EVALUATION

We use regular Pentium PC with CPU 2 GHz, memory 2 GB
for the simulation.

A. Load-Balance Comparison

In this section, we provide simulation results for comparing
five different scheduling algorithms for load-balance. For con-
venience, short name is given for each algorithm as follows.

1) ZHCJ algorithm: as introduced in [14], the algorithm al-
ways chooses physical machines with lowest referred V'
value and available resource to allocate VMs.

2) ZHJZ algorithm: selects a referring physical machine [16],
and calculates the value and chooses physical machines
with lowest referred B value and available resource to al-
locate VMs.

3) LIF algorithm: based on demands characteristics (for ex-
ample, CPU intensive, high memory, high bandwidth re-
quirements, etc.), always selects physical machines with
lowest integrated imbalance value [as defined in (4) and
(5)] and available resource to allocate VMs.

4) Rand algorithm: randomly assigns requests (VMs) to phys-
ical machines which have available resource.

5) Round-Robin (Round) algorithm: is one of the simplest
scheduling algorithms, which assigns tasks to each phys-
ical servers in equal portions and in circular order, handling
all tasks without priority (also known as cyclic executive).
For simulation, three types of heterogeneous physical ma-
chines (PMs) are considered; each physical machine pool
consists of some amount of physical machines (can be

0.14
BPMs=100, VMs=1K
0.12 ]

o ELIY | H BPMs=200, VMs=2K
0.08 | A TH-— Y | H OPMs=300, VMs=3K
0.06 1 u H m H OPMs=400, VMs=4K
0.041 | B H 7| H

l i i BPMs=500, VMs=5K
0.02 | - H- - H
i i BPMs=600, VMs=6K

ZH]Z ZHCT Rand Round LIF

Fig. 11. Average imbalance values of a Cloud Data Center.

dynamically configured and extended). For simulation of
large number of VM requests, both CPU and memory are
configured with large size, which can be set dynamically

type 1 CPU =6 GHz, memory = 8 G,
bandwidth = 1000 M

type 2 CPU =12 GHz, memory = 16 G,
bandwidth = 1000 M

type 3 CPU =18 GHz, memory = 32 G,
bandwidth = 1000 M.

Similar to Amazon eight EC2 instances with high-CPU,
high-memory and standard configuration, eight types of
VMs are generated randomly as follows (can be dynamic
configured) as in Table 1.

For all the simulation in this section, different requests are
generated as follows: the total numbers of arrivals (requests)
can be randomly set; all requests follow Poisson arrival process
and have exponential length distribution; the maximum length
of requests can be set; for each set of inputs (requests), simu-
lations are run six times and all the results shown in this paper
are the average of the six runs. In this section, the number of
PMs is ranging from 100 to 600, the number of requests of
VMs is varying from 250 to 1500, a Pentium PC with 2 GHz
CPU, 2 G memory is used for all simulation. The input data of
user requests is generated using program by considering equal
probabilities of above mentioned eight types of VMs. Of course,
different (random) probabilities of different types of VMs can
be generated. For steady-state analysis, a warm-up period (ini-
tial 2000 requests) is used to drop the transient period. Fig. 11.
shows average imbalance level (defined in (7)) of a Cloud data
center. It can be seen that LIF algorithm has lowest average
imbalance level when the total number of VMs and PMs are
varying. Through extensive simulation, similar results are ob-
served.

B. Comparing Energy-Efficiency

We considered four algorithms for energy-efficiency.

1) Round Robin (RR): the round-robin is the most commonly
used scheduling algorithm (for example by Eucalyptus
[26] and Amazon EC2), which allocates VM requests in
turn to each PM. The advantage of this algorithm is that it
is simple to implement.



160 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 12, NO. 1, JANUARY 2015

8000

7000 3

6000 1

5000

4000

3000 N ; —

SRR

5555
3
%

BB

2000

<5

i
RRRsRRS
o3

1000

Fig. 12. The total energy consumption (in kw hours) by varying maximum
duration of VM requests.

2) Modified Best Fit Decreasing (MBFD): Modified Best Fit
Decreasing (MBFD) algorithm is a bin-packing algorithm.
Best Fit Decreasing is shown to use no more than 11/9 OPT
+1 bins (where OPT is the number of bins given by the
optimal solution) [2].

3) Offline without delay (OFWID): OFWID knows all re-
quests in advance and follows the requests exactly without
delay. It firstly sorts requests in increasing order of their
start-times and allocates requests to PMs in increasing
order of their IDs. If all running PMs cannot host the
request, then a new PM is turned on.

4) Online without delay (ONWID): ONWID knows one re-
quest each time. It allocates requests to PMs in increasing
order of their IDs. If all running PMs cannot host the re-
quest, a new PM is powered on. When the total number of
PMs is fixed, if all PMs still cannot host the request, then
the request is blocked.

In this case, eight types of VMs are considered, as shown in
Table I, which is based on Amazon EC2. The total numbers
of arrivals (requests) is 1000 and each type of VMs has equal
number, i.e., 125. All requests follow Poisson arrival process
and have exponential service time, the mean inter arrival pe-
riod is set as 5, the maximum intermediate period is set as 50,
the maximum duration of requests is set as 50, 100, 200, 400,
800 slots, respectively. Each slot is 5 min. For example, if the
requested duration (service time) of a VM is 20 slots, actually
its duration is 20 x 5 = 100min. For each set of inputs (re-
quests), experiments are run six times and all the results shown
in this paper are the average of the six runs. The configuration
of physical machines is based on eight types of VMs, as shown
in Table II. In this configuration, there are three different types
of PMs (heterogeneous case) and the total capacity of a VM
is proportional to the total capacity of a PM. For comparison
purpose, we assume that all VMs occupy all their requested ca-
pacity. Fig. 12 shows the total energy consumption (in kilowatts
hours) of the four algorithms as the maximum duration varies
from 50 to 800, while all other parameters are the same.

Similar results for load-balance and energy-efficiency are ob-
tained for other cases, we do not present all of them because of
page limit.

VI. CONCLUSION

In this paper, we introduce a lightweight Cloud resources
scheduling emulator, CloudSched. Its major features and de-
sign and implementation details are presented. Simulation re-
sults are discussed for load-balance and energy-efficient algo-
rithms. CloudSched can help developers to identify and explore
appropriate solutions considering different resource scheduling
policies and algorithms. CloudSched can also import an external
benchmark workload (such as LLNL data [27]); currently it
needs transferring the format of external benchmark into Cloud-
Sched acceptable format. There are quite a few open issues for
simulating real-time VM allocation.

* Developing more metrics to measure the quality of related
algorithms. For different scheduling strategies such as uti-
lization maximization and maximum profits, etc., of mul-
tidimensional resource, we will add more metrics.

* Considering more simulation scenarios. Also some more
simulation results such as varying the probability of each
VM request, fixing total number of physical servers but
varying number of VMs are collecting. Extension to mul-
tiple federated data centers can be considered.

* Considering user priority. Currently, we considered that
all users have same priority. Different priority policies can
be created for users to have different priorities for certain
types of VM.
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